Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T10:24:46.474Z Has data issue: false hasContentIssue false

Assessment of the Influence of Test Characteristics on the Clinical and Cost Impacts of Methicillin-Resistant Staphylococcus aureus Screening Programs in US Hospitals

Published online by Cambridge University Press:  02 January 2015

Natalia Olchanski
Affiliation:
Boston Healthcare Associates, Boston, Massachusetts
Charles Mathews*
Affiliation:
Boston Healthcare Associates, Boston, Massachusetts
Lauren Fusfeld
Affiliation:
Boston Healthcare Associates, Boston, Massachusetts
William Jarvis
Affiliation:
Jason and Jarvis Associates, Hilton Head Island, South Carolina
*
Boston Healthcare Associates, 75 Federal St., 9th Floor, Boston, MA 02110-1913 ([email protected])

Abstract

Objective.

To compare the impacts of different methicillin-resistant Staphylococcus aureus (MRSA) screening test options (eg, polymerase chain reaction [PCR], rapid culture) and program characteristics on the clinical outcomes and budget of a typical US hospital.

Methods.

We developed an Excel-based decision-analytic model, using published literature to calculate and compare hospital costs and MRSA infection rates for PCR- or culture-based MRSA screening and then used multivariate sensitivity analysis to evaluate key variables. Same-day PCR testing for a representative 370-bed teaching hospital in the United States was assessed in different populations (high-risk patients, intensive care unit [ICU] patients, or all patients) and compared with other test options.

Results.

Different screening program populations (all patients, high-risk patients, ICU patients, or patients with previous MRSA colonization or infection only) represented a potential savings of $12,158-$76,624 per month over no program ($188,618). Analysis of multiple test options in high-risk population screening indicated that same-day PCR testing of high-risk patients resulted in fewer infections over 1,720 patient-days (2.9, compared with 3.5 for culture on selective media and 3.8 for culture on nonselective media) and the lowest total cost ($112,012). The costs of other testing approaches ranged from $113,742 to $123,065. Sensitivity analysis revealed that variations in transmission rate, conversion to infection, prevalence increases, and hospital size are important to determine program impact. Among test characteristics, turnaround time is highly influential.

Conclusion.

All screening options showed reductions in infection rates and cost impact improvement over no screening program. Among the options, same-day PCR testing for high-risk patients slightly edges out the others in terms of fewest infections and greatest potential cost savings.

Type
Original Article
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Elixhauser, A, Steiner, C. Infections with methicillin-resistant Staphylococcus aureus (MRSA) in U.S. Hospitals, 1993-2005. AHRQ Healthcare Cost and Utilization Project Statistical Brief 2007;35.Google Scholar
2.Cosgrove, SE, Qi, Y, Kaye, KS, Harbarth, S, Karchmer, AW, Carmeli, Y. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol 2005;26:166174.CrossRefGoogle ScholarPubMed
3.Abramson, MA, Sexton, DJ. Nosocomial methicillin-resistant and methicillin-susceptible Staphylococcus aureus primary bacteremia: at what costs? Infect Control Hosp Epidemiol 1999;20:408411.CrossRefGoogle ScholarPubMed
4.Rao, G, Michalczyk, P, Nayeem, N, Walker, G, Wigmore, L. Prevalence and risk factors for methicillin-resistant Staphylococcus aureus in adult emergency admissions: a case for screening all patients? J Hosp Infect 2007;66:1521.Google Scholar
5.Noskin, GA, Rubin, RJ, Schentag, JJ, et al.National trends in Staphylococcus aureus infection rates: impact on economic burden and mortality over a 6-year period (1998-2003). Clin Infect Dis 2007;45:11321140.CrossRefGoogle Scholar
6.Muto, CA, Jernigan, JA, Ostrowsky, BE, et al.SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol 2003;24:362386.CrossRefGoogle ScholarPubMed
7.Siegel, J, Rhinehart, E, Jackson, M, Chiarello, L. Management of multidrug-resistant organisms in healthcare settings: CDC; 2006. Available at http://www.cdc.gov.Google Scholar
8.APIC. Guide to the elimination of methicillin-resistant Staphylococcus aureus (MRSA) transmission in hospital settings APIC; 2007. Available at http://www.apic.org.Google Scholar
9.Harbarth, S, Sax, H, Uckay, I, et al.A predictive model for identifying surgical patients at risk of methicillin-resistant Staphylococcus aureus carriage on admission. J Am Coll Surg 2008;207:683689.CrossRefGoogle ScholarPubMed
10.Robicsek, A, Beaumont, JL, Paule, SM, et al.Universal surveillance for methicillin-resistant Staphylococcus aureus in 3 affiliated hospitals. Ann Intern Med 2008;148:409418.CrossRefGoogle ScholarPubMed
11.Peterson, LR, Hacek, DM, Robicsek, A. 5 Million Lives Campaign. Case study: an MRSA intervention at Evanston Northwestern Healthcare. Jt Comm J Qual Patient Saf 2007;33:732738.Google ScholarPubMed
12. Bio-Rad. MRSASelect information sheet; June 2008. Available at http://www.bio-rad.com/Diagnostics/pdfs/-cmd/MRSASelect%20Product%20Insert%20June%202008.pdf. Accessed February 26, 2010.Google Scholar
13. Becton Dickinson. CHROMAgar MRSA information sheet; 2006. Available at http://www.bd.com/ds/technicalCenter/clsi/clsi-chromagarmrsa.pdf. Accessed February 26, 2010.Google Scholar
14.Nahimana, I, Francioli, P, Blanc, DS. Evaluation of three chromogenie media (MRSA-ID, MRSA-Select and CHROMagar MRSA) and ORSAB for surveillance cultures of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2006;12:11681174.CrossRefGoogle ScholarPubMed
15.Beigi, RH, Bunge, K, Song, Y, Lee, BY. Epidemiologic and economic effect of methicillin-resistant Staphylococcus aureus in obstetrics. Obstet Gynecol 2009;113:983991.CrossRefGoogle ScholarPubMed
16.Clancy, M, Graepler, A, Wilson, M, Douglas, I, Johnson, J, Price, CS. Active screening in high-risk units is an effective and cost-avoidant method to reduce the rate of methicillin-resistant Staphylococcus aureus infection in the hospital. Infect Control Hosp Epidemiol 2006;27:10091017.CrossRefGoogle ScholarPubMed
17.Noskin, GA, Rubin, RJ, Schentag, JJ, et al.Budget impact analysis of rapid screening for Staphylococcus aureus colonization among patients undergoing elective surgery in US hospitals. Infect Control Hosp Epidemiol 2008;29:1624.CrossRefGoogle ScholarPubMed
18.Shrestha, NK, Shermock, KM, Gordon, SM, et al.Predictive value and cost-effectiveness analysis of a rapid polymerase chain reaction for preoperative detection of nasal carriage of Staphylococcus aureus. Infect Control Hosp Epidemiol 2003;24:327333.CrossRefGoogle ScholarPubMed
19.Cooper, BS, Stone, SP, Kibbler, CC, et al.Systematic review of isolation policies in the hospital management of methicillin-resistant Staphylococcus aureus: a review of the literature with epidemiological and economic modelling. Health Technol Assess 2003;7:1194.CrossRefGoogle ScholarPubMed
20.Raboud, J, Saskin, R, Simor, A, et al.Modeling transmission of methicillin-resistant Staphylococcus aureus among patients admitted to a hospital. Infect Control Hosp Epidemiol 2005;26:607615.CrossRefGoogle ScholarPubMed
21.Ismail, NA, Pettitt, AN. Smoothing a discrete hazard function for the number of patients colonized with methicillin-resistant Staphylococcus aureus in an intensive care unit. Stat Med 2004;23:12471258.CrossRefGoogle Scholar
22.Drovandi, CC, Pettitt, AN. Multivariate Markov process models for the transmission of methicillin-resistant Staphylococcus aureus in a hospital ward. Biometrics 2008;64:851859.CrossRefGoogle Scholar
23.McBryde, ES, Pettitt, AN, McElwain, DL. A stochastic mathematical model of methicillin resistant Staphylococcus aureus transmission in an intensive care unit: predicting the impact of interventions. J Theor Biol 2007;245:470481.CrossRefGoogle Scholar
24.Jonas, S. An introduction to the U.S. health care system. New York, Springer; 2003.Google Scholar
25. American Hospital Association. Fast facts on US hospitals. Available at http://www.aha.org/aha/resource-center/Statistics-and-Studies/fast-facts.html. Accessed January 16, 2009.Google Scholar
26.Jarvis, WR, Schlosser, J, Chinn, RY, Tweeten, S, Jackson, M. National prevalence of methicillin-resistant Staphylococcus aureus in inpatients at US health care facilities, 2006. Am J Infect Control 2007;35:631637.CrossRefGoogle ScholarPubMed
27.Papia, G, Louie, M, Traila, A, Johnson, C, Collins, V, Simor, AE. Screening high-risk patients for methicillin-resistant Staphylococcus aureus on admission to the hospital: is it cost effective? Infect Control Hosp Epidemiol 1999;20:473477.CrossRefGoogle Scholar
28.Duke, EM. Report to Congress: The Critical Care Workforce: A Study of the Supply and Demand for Critical Care Physicians: HRSA; 2006. Available at ftp://ftp.hrsa.gov/bhpr/nationalcenter/criticalcare.pdf.Google Scholar
29.Hidron, AI, Kourbatova, EV, Halvosa, JS, et al.Risk factors for colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to an urban hospita: emergence of community-associated MRSA nasal carriage. Clin Infect Dis 2005;41:159166.CrossRefGoogle Scholar
30.Cosgrove, SE, Sakoulas, G, Perencevich, EN, Schwaber, MJ, Karch-mer, AW, Carmeli, Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 2003;36:5359.CrossRefGoogle ScholarPubMed
31.Jernigan, JA, Pullen, AL, Flowers, L, Bell, M, Jarvis, WR. Prevalence of and risk factors for colonization with methicillin-resistant Staphylococcus aureus at the time of hospital admission. Infect Control Hosp Epidemiol 2003;24:409414.CrossRefGoogle ScholarPubMed
32.Buhlmann, M, Bogli-Stuber, K, Droz, S, Muhlemann, K. Rapid Screening for carriage of methicillin-resistant Staphylococcus au-reusby PCR and associated costs. J Clin Microbiol 2008;46:21512154.CrossRefGoogle ScholarPubMed
33.Back, NA, Linnemann, CC Jr, Staneck, JL, Kotagal, UR. Control of methicillin-resistant Staphylococcus aureus in a neonatal intensive-care unit: use of intensive microbiologic surveillance and mupirocin. Infect Control Hosp Epidemiol 1996;17:227231.Google Scholar
34.Coello, R, Glynn, JR, Gaspar, C, Picazo, JJ, Fereres, J. Risk factors for developing clinical infection with methicillin-resistant Staphylococcus aureus (MRSA) amongst hospital patients initially only colonized with MRSA. J Hosp Infect 1997;37:3946.CrossRefGoogle ScholarPubMed
35.Jernigan, JA, Clémence, MA, Stott, GA, et al.Control of methicillin-resistant Staphylococcus aureus at a university hospital: one decade later. Infect Control Hosp Epidemiol 1995;16:686696.CrossRefGoogle Scholar
36.Roccaforte, JS, Bittner, MJ, Stumpf, CA, Preheim, LC. Attempts to eradicate methicillin-resistant Staphylococcus aureus colonization with the use of trimethoprim-sulfamethoxazole, rifampin, and bacitracin. Am J Infect Control 1988;16:141146.CrossRefGoogle ScholarPubMed
37.Takahashi, N, Nishida, H, Kato, H, Imanishi, K, Sakata, Y, Uchi-yama, T. Exanthematous disease induced by toxic shock syndrome toxin 1 in the early neonatal period. Lancet 1998;351:16141619.CrossRefGoogle ScholarPubMed
38.Muto, CA. Designing a Program to Eliminate MRSA Transmission Part I: Making the Clinical Case. Presented at APIC, December 6, 2006.Google Scholar
39.Jernigan, JA, Titus, MG, Groschel, DH, Getchell-White, S, Farr, BM. Effectiveness of contact isolation during a hospital outbreak of methicillin-resistant Staphylococcus aureus. Am J Epidemiol 1996;143:496504.CrossRefGoogle ScholarPubMed
40.Huang, SS, Platt, R. Risk of methicillin-resistant Staphylococcus aureus infection after previous infection or colonization. Clin Infect Dis 2003;36:281285.CrossRefGoogle ScholarPubMed
41.Marshall, C, Spelman, D, Harrington, G, McBryde, E. Daily hazard of acquisition of methicillin-resistant Staphylococcus aureus infection in the intensive care unit. Infect Control Hosp Epidemiol 2009;30:125129.CrossRefGoogle ScholarPubMed
42.Chaberny, IF, Ziesing, S, Mattner, F, et al.The burden of MRSA in four German university hospitals. Int J Hyg Environ Health 2005;208:447453.CrossRefGoogle ScholarPubMed
43.Kaye, KS, Engemann, JJ, Mozaffari, E, Carmeli, Y. Reference group choice and antibiotic resistance outcomes. Emerg Infect Dis 2004;10:11251128.CrossRefGoogle ScholarPubMed
44.Stone, PW, Larson, E, Kawar, LN. A systematic audit of economic evidence linking nosocomial infections and infection control interventions: 1990-2000. Am J Infect Control 2002;30:145152.CrossRefGoogle ScholarPubMed
45.FitzGerald, S. More hospitals fight MRSA with universal screening: are “search and destroy” methods the right call? ACP Hospitalist 2007.Google Scholar
46.Levenson, D. The path to better MRSA control. Clinical Laboratory News 2007;33:8.Google Scholar
47.Paule, SM, Hacek, DM, Kufner, B, et al.Performance of the BD GeneOhm methicillin-resistant Staphylococcus aureus test before and during high-volume clinical use. J Clin Microbiol 2007;45:29932998.CrossRefGoogle ScholarPubMed