Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T20:19:49.338Z Has data issue: false hasContentIssue false

Antimicrobial Resistance in Staphylococcus aureus at the University of Chicago Hospitals: A 15-Year Longitudinal Assessment in a Large University-Based Hospital

Published online by Cambridge University Press:  02 January 2015

John B. Seal
Affiliation:
Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Chicago, Chicago, Illinois
Beatriz Moreira
Affiliation:
Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Cindy D. Bethel
Affiliation:
Clinical Microbiology Laboratories, University of Chicago Hospitals, Chicago, Illinois
Robert S. Daum*
Affiliation:
Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Chicago, Chicago, Illinois
*
University of Chicago Children's Hospital, MC 6054, 5841 S. Maryland Avenue, Chicago, IL 60637

Abstract

Objectives:

To describe a longitudinal profile of resistance to beta-lactam antimicrobials among isolates of Staphylococcus aureus at a large university teaching hospital and to evaluate the impact of the methicillin resistance phenotype on resistance trends for non-beta-lactam antimicrobials.

Design:

Retrospective evaluation of antimicrobial susceptibility data for all 17,287 S. aureus isolates obtained from January 1986 through December 2000.

Setting:

The University of Chicago Hospitals, a family of tertiary-care, university-affiliated hospitals in Chicago, Illinois, consisting of 547 adult and pediatric beds.

Results:

The annual rate of resistance to methicillin increased from 13% in 1986 to 28% in 2000 (P < .001) and has not plateaued. For each non-beta-lactam antimicrobial tested, the annual rates of resistance were far higher among methicillinresistant S. aureus (MRSA) isolates than among methicillin-susceptible S. aureus (MSSA) isolates. The annual rates of resistance to the macrolide, lincosamide, and streptogramin (MLS) antimicrobials erythromycin and clindamycin increased among MSSA isolates (P < .01), but remained lower than 20%. Resistance to the MLS antimicrobials was higher among MRSA isolates (higher than 60%), but the annual rate decreased significantly during the study (P < .01).

Conclusion:

The prevalence of methicillin resistance among S. aureus isolates has continued to increase; resistance to non-beta-lactam antimicrobials is far more common among MRSA isolates. Recent decreases in the proportion of MRSA isolates resistant to non-beta-lactam antimicrobials suggest important changes in the epidemiology of this pathogen.

Type
Orginal Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Crossley, KB, Archer, GL. The Staphylococci in Human Disease. New York: Churchill Livingstone; 1997:331565.Google Scholar
2.Jain, A, Daum, RS. Staphylococcal infections in children: part 1. Pediatr Rev 1999;20:183191.CrossRefGoogle ScholarPubMed
3.Jain, A, Ben-Ami, T, Daum, RS. Staphylococcal infections in children: part 2. Pediatr Rev 1999;20:219227.CrossRefGoogle ScholarPubMed
4.Jain, A, Daum, RS. Staphylococcal infections in children: part 3. Pediatr Rev 1999;20:261265.CrossRefGoogle ScholarPubMed
5.Mckenney, D, Pouliot, K, Wang, Y, et al.Vaccine potential of poly-1-6 β-D-N-succinylglucosamine, an immunoprotective surface polysaccharide of Staphylococcus aureus and Staphylococcus epidermidis. J Biotechnol 2000;83:3744.CrossRefGoogle ScholarPubMed
6.Shinefield, H, Black, S, Fattom, A, et al.Use of Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med 2002;346:491496.CrossRefGoogle ScholarPubMed
7.Simor, AE, Ofner-Agostini, M, Bryce, E, et al.The evolution of methicillin-resistant Staphylococcus aureus in Canadian hospitals: 5 years of national surveillance. CMAJ 2001;165:2126.Google ScholarPubMed
8.Petinaki, E, Miriagou, V, Tzouvelekis, LS, et al.Methicillin-resistant Staphylococcus aureus in the hospitals of Central Greece. Int J Antimicrob Agents 2001;18:6165.CrossRefGoogle ScholarPubMed
9.Fluit, AC, Wielders, CLC, Verhoef, J, Schmitz, FJ. Epidemiology and susceptibility of 3,051 Staphylococcus aureus isolates from 25 university hospitals participating in the European SENTRY study. J Clin Microbiol 2001;39:37273732.CrossRefGoogle Scholar
10.Madani, TA, Al-Abdullah, NA, Al-Sanousi, AA, Ghabrah, TM, Afandi, SZ, Bajunid, HA. Methicillin-resistant Staphylococcus aureus in two tertiary-care centers in Jeddah, Saudi Arabia. Infect Control Hosp Epidemiol 2001;22:211216.CrossRefGoogle ScholarPubMed
11.Witte, W, Braulke, C, Cuny, C, Heuck, D, Kresken, M. Changing pattern of antibiotic resistance in methicillin-resistant Staphylococcus aureus from German hospitals. Infect Control Hosp Epidemiol 2001;22:683686.CrossRefGoogle ScholarPubMed
12.Orrett, FA. Methicillin resistance among Trinidadian isolates of community and hospital strains of Staphylococcus aureus and their patterns of resistance to non-β-lactam antibiotics. Jpn J Infect Dis 1999;52:238241.Google ScholarPubMed
13.Albertini, MT, Benoit, C, Berardi, L, et al.Surveillance of methicillin-resistant Staphylococcus aureus (MRSA) and Enterobacteriaceae producing extended-spectrum beta-lactamase (ESBLE) in Northern France: a five-year multicentre incidence study. J Hosp Infect 2002;52:107113.Google Scholar
14.Panlilio, AL, Culver, DH, Gaynes, RP, et al.Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975-1991. Infect Control Hosp Epidemiol 1992;13:582586.Google ScholarPubMed
15.Riley, TV, Rouse, IL. Methicillin-resistant Staphylococcus aureus in Western Australia, 1983-1992. J Hosp Infect 1995;29:177188.CrossRefGoogle ScholarPubMed
16.Morgan, M, Evans-Williams, D, Salmon, R, Hosein, I, Looker, DN, Howard, A. The population impact of MRSA in a country: the national survey of MRSA in Wales, 1997. J Hosp Infect 2000;44:227239.CrossRefGoogle Scholar
17.Tsiodras, S, Gold, HS, Sakoulas, G, et al.Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 2001;358:207208.CrossRefGoogle Scholar
18.Werner, G, Cuny, C, Schmitz, FJ, Witte, W. Methicillin-resistant, quin-upristin/dalfopristin-resistant Staphylococcus aureus with reduced sensitivity to glycopeptides. J Clin Microbiol 2001;39:35863590.CrossRefGoogle ScholarPubMed
19.Maranan, MC, Moreira, B, Boyle-Vavra, S, Daum, RS. Antimicrobial resistance in staphylococci: epidemiology, molecular mechanisms, and clinical relevance. Infect Dis Clin North Am 1997;11:813849.CrossRefGoogle ScholarPubMed
20.Boyle-Vavra, S, Labischinski, H, Ebert, CC, Ehlert, K, Daum, RS. A spectrum of changes occurs in peptidoglycan composition of glycopeptide-intermediate clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 2001;45:280287.CrossRefGoogle ScholarPubMed
21.Centers for Disease Control and Prevention. Staphylococcus aureus resistant to vancomycin: United States, 2002. MMWR 2002;51:565567.Google Scholar
22.Centers for Disease Control and Prevention. Vancomycin-resistant Staphylococcus aureus: Pennsylvania, 2002. MMWR 2002;51:902.Google Scholar
23.Speller, DCE, Johnson, AP, James, D, Marples, RR, Chartert, A, George, RC. Resistance to methicillin and other antibiotics in isolates of Staphylococcus aureus from blood and cerebrospinal fluid, England and Wales, 1989-95. Lancet 1997;350:323325.CrossRefGoogle ScholarPubMed
24.Fluit, C, Jones, ME, Schmitz, FJ, Acar, J, Gupta, R, Verhoef, J. Antimicrobial susceptibility and frequency of occurrence of clinical blood isolates in Europe from the SENTRY Antimicrobial Surveillance Program, 1997 and 1998. Clin Infect Dis 2000;30:454460.CrossRefGoogle ScholarPubMed
25.Diekema, DJ, Pfaller, MA, Schmitz, FJ, et al.Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis 2001;32:S114S132.CrossRefGoogle ScholarPubMed
26.Aho, A, Kernighan, B, Weinberger, P. The AWK Programming Language, Gnu AWK version 2.15, patch level 6, GNU ed. Murray Hill, NJ: Addison-Wesley; 1988.Google Scholar
27.Dean, A, Dean, J, Coulombier, D, et al.Epi-lnfo, Version 6: A Word-Processing Database and Statistics Program for Epidemiology on Microcomputers. Atlanta, GA: Centers for Disease Control and Prevention; 1994.Google Scholar
28.National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA: National Committee for Clinical Laboratory Standards; 1999. Approved standard M100-S9.Google Scholar
29.Snedecor, W, Cochran, WG. Statistical Methods. Ames, IA: Iowa State University Press; 1980.Google Scholar
30.Wacholder, S. Binomial regression in GLIM: estimating risk ratios and risk differences. Am J Epidemiol 1986;123:174184.CrossRefGoogle ScholarPubMed
31.Berman, D, Eisner, W, Kreiswirth, B. Community-acquired methicillin-resistant Staphylococcus aureus infection. N Engl J Med 1993;329:1896.CrossRefGoogle ScholarPubMed
32.Herold, B, Immergluck, L, Maranan, M, et al.Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 1998;279:5938.CrossRefGoogle ScholarPubMed
33.Hussain, FM, Boyle-Vavra, S, Shete, PB, Daum, RS. Evidence for a continuum of decreased vancomycin susceptibility in unselected Staphylococcus aureus clinical isolates. J Infect Dis 2002;186:661667.CrossRefGoogle ScholarPubMed
34.Tenover, FC, Biddle, JW, Lancaster, MV. Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus. Emerg Infect Dis 2001;7:327332.CrossRefGoogle ScholarPubMed
35.Bierbaum, G, Fuchs, K, Lenz, W, Szekat, C, Sahl, HG. Presence of Staphylococcus aureus with reduced susceptibility to vancomycin in Germany. Eur J Clin Microbiol Infect Dis 1999;18:691696.CrossRefGoogle ScholarPubMed
36.Katayama, Y, Ito, T, Hiramatsu, K. A new class of genetic element, staphylococcal cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000;44:15491555.CrossRefGoogle ScholarPubMed
37.Ito, T, Katayama, Y, Asada, K, et al.Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2001;45:13231336.CrossRefGoogle ScholarPubMed
38.Daum, RS, Ito, T, Hiramatsu, K, et al.A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds. J Infect Dis 2002;186:13441347.CrossRefGoogle ScholarPubMed
39.Ma, XX, Ito, T, Tiensasitorn, C, et al.A novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 2002;46:11471152.CrossRefGoogle ScholarPubMed
40.Jones, ME, Mayfield, DC, Thornsberry, C, Karlowsky, JA, Sahm, DF, Peterson, D. Prevalence of oxacillin resistance in Staphylococcus aureus among inpatients and outpatients in the United States during 2000. Antimicrob Agents Chemother 2002;46:31043105.CrossRefGoogle ScholarPubMed