Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T05:11:45.301Z Has data issue: false hasContentIssue false

Risk Factors Associated With Isolation of Stenotrophomonas (Xanthomonas) maltophilia in Clinical Specimens

Published online by Cambridge University Press:  02 January 2015

Carolyn J. VanCouwenberghe*
Affiliation:
Division of Nursing, California State University, Sacramento
Thomas B. Farver
Affiliation:
Division of Infectious and Immunologic Diseases, University of California, Davis
Stuart H. Cohen
Affiliation:
Department of Population Health and Reproduction, University of California, Davis
*
Division of Infectious Diseases, University of California Davis Medical Center, 4301 X St, Sacramento, CA 95817

Abstract

Objective:

To determine risk factors for patients whose cultures grew Stenotrophomonas maltophilia.

Design:

Retrospective case-control study of 60 patients with cultures positive for S maltophilia, matched by specimen site to 120 controls whose cultures grew other gram-negative aerobic bacteria.

Setting:

University medical center.

Results:

S maltophilia was identified from the following sites: respiratory (36), wound (13), urinary (6), blood (4), and cerebral spinal fluid (1). By univariate analysis, cases had a higher risk of exposure than controls for ampicillin (P<.001), gentamicin (P<.001), vancomycin (P=.001), metronidazole (P=.003), piperacillin (P=.007), cefotaxime (P=.014), ceftazidime (P=.017), ciprofloxacin (P=.030), tobramycin (P=.040), and chronic respiratory disease (P=.024). Length of time foreign objects were in place prior to positive culture differed significantly between cases and controls only for endotracheal tubes in patients with respiratory isolates (median number of days: 12.5 for cases, 5 for controls; P=.007). For patients with urinary tract infections, having a urinary catheter increased the odds of infection 10 times over controls. Exposures found by multivariate analysis to be significantly more prevalent in cases than controls included ampicillin, cefotaxime, erythromycin, gentamicin, metronidazole, piperacillin, tobramycin, chronic respiratory disease, and female gender. Odds ratios were >1 indicating higher risk for cases, except for erythromycin, which had an odds ratio <1.

Conclusions:

The primary risk factor associated with isolation of S maltophilia was antibiotic use. For patients with pulmonary infections, chronic respiratory disease and length of time an endotracheal tube was in place also contributed to the risk. This suggests that judicious use of antibiotics may prevent some cases of S maltophilia infection.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Swartz, MN. Hospital-acquired infections: diseases with increasing limited therapies. Proc Natl Acad Sci USA 1994;91:24202427.CrossRefGoogle ScholarPubMed
2. Palleroni, NJ, Bradbury, JF. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia . Int J Syst Bacteriol 1993;43:606609.CrossRefGoogle ScholarPubMed
3. VanCouwenberghe, CJ, Cohen, SH. Analysis of epidemic and endemic isolates of Xanthomonas maltophilia by contourclamped homogeneous electric field gel electrophoresis. Infect Control Hosp Epidemiol 1994;15:691696.CrossRefGoogle Scholar
4. VanCouwenberghe, CJ, Cohen, SH, Tang, YJ, Gumerlock, PH, Silva, J Jr. Genomic fingerprinting of epidemic and endemic strains of Stenotrophomonas (formerly Xanthomonas maltophilia) by arbitrarily primed PCR. J Clin Microbiol 1995;33:12891291.CrossRefGoogle ScholarPubMed
5. Aoun, M, Van der Auwera, P, Devleeshouwer, C, et al. Bacteraemia caused by non-aeruginosa Pseudomonas species in a cancer center. J Hosp Infect 1992;22:307316.CrossRefGoogle Scholar
6. Victor, M, Arpi, M, Bruun, B, Jønsson, V, Hansen, M. Xanthomonas maltophilia bacteremia in immunocompromised hematological patients. Scand J Infect Dis 1994;26:163170.CrossRefGoogle ScholarPubMed
7. Nagai, T. Association of Pseudomonas maltophilia with malignant lesions. J Clin Microbiol 1984;20:10031005.CrossRefGoogle ScholarPubMed
8. Khardori, N, Elting, L, Wong, E, Schable, B, Bodey, G. Nosocomial infections due to Xanthomonas maltophilia (Pseudomonas maltophilia) in patients with cancer. Rev Infect Dis 1990;12:9971003.CrossRefGoogle Scholar
9. Noskin, G, Grohmann, S. Xanthomonas maltophilia bacteremia: an analysis of factors influencing outcome. Infectious Diseases in Clinical Practice 1992;1:230236.CrossRefGoogle Scholar
10. Kerr, KG, Corps, CM, Hawkey, PM. Infections due to Xanthomonas maltophilia in patients with hematologic malignancy. Rev Infect Dis 1991;13:762.CrossRefGoogle ScholarPubMed
11. Elting, L, Bodey, G. Septicemia due to Xanthomonas species and non-aeruginosa Pseudomonas species: increasing incidence of catheter-related infections. Medicine 1990;69:296306.CrossRefGoogle ScholarPubMed
12. Elting, L, Khardori, N, Bodey, G, Fainstein, V. Nosocomial infection caused by Xanthomonas maltophilia: a case-control study of predisposing factors. Infect Control Hosp Epidemiol 1990;11:134138.CrossRefGoogle ScholarPubMed
13. Garner, J, Jarvis, W, Emori, T, Horan, T, Hughes, J. CDC definitions for nosocomial infections. Am J Infect Control 1988;16:128140.CrossRefGoogle ScholarPubMed
14. Knaus, W, Draper, E, Wagner, D, Zimmerman, J. APACHE II: a severity of disease classification system. Crit Care Med 1985;13:818829.CrossRefGoogle ScholarPubMed
15. Pollack, M, Ruttiman, U, Getson, P. Pediatric Risk of Mortality (PRISM) score. Crit Care Med 1988;16:11101116.CrossRefGoogle ScholarPubMed
16. Villarino, ME, Stevens, LE, Schable, B, et al. Risk factors for epidemic Xanthomonas maltophilia infection/colonization in intensive care unit patients. Infect Control Hosp Epidemiol 1992;13:201206.CrossRefGoogle ScholarPubMed
17. Hulisz, D, File, T. Predisposing factors and antibiotic use in nosocomial infections caused by Xanthomonas maltophilia . Infect Control Hosp Epidemiol 1992;13:489490.CrossRefGoogle ScholarPubMed
18. Vartivarian, S, Anaissie, E, Bodey, G, Sprigg, H, Rolston, K. A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: implications for therapy. Antimicrob Agents Chemother 1994;38:624627.CrossRefGoogle ScholarPubMed
19. Morrison, A, Hoffmann, K, Wenzel, R. Associated mortality and clinical characteristics of nosocomial Pseudomonas maltophilia in a university hospital. J Clin Microbiol 1986;24:5255.CrossRefGoogle ScholarPubMed
20. Garcia-Rodriguez, JA, Garcia Sanchez, JE, Garcia Garcia, MI, Garcia Sanchez, E, Munoz Bellido, JL. Antibiotic susceptibility profile of Xanthomonas maltophilia. In vitro activity of β- Lactam/β-Lactamase inhibitor combinations. Diagn Microbiol Infect Dis 1991;14:239243.CrossRefGoogle ScholarPubMed
21. Rolston, K, Anaissie, E, Bodey, G. In-vitro susceptibility of Pseudomonas species to fifteen antimicrobial agents. J Antimicrob Chemother 1987;19:193196.CrossRefGoogle ScholarPubMed
22. Jang, T, Wang, F, Wang, L, Liu, C, Liu, I. Xanthomonas maltophilia bacteremia: an analysis of 32 cases. J Formos Med Assoc 1992;91:11701176.Google ScholarPubMed
23. Winston, D, Ho, W, Bruckner, D, Champlin, R. Beta-lactam antibiotic therapy in febrile granulocytopenic patients. Ann Intern Med 1991;115:849859.CrossRefGoogle ScholarPubMed
24. McDonald, GR, Pernenkil, R. Community-acquired Xanthomonas maltophilia pyelonephritis. South Med J 1993;86:967968.CrossRefGoogle ScholarPubMed
25. Roilides, E, Butler, KM, Husson, RN, Mueller, BU, Lewis, LL, Pizzo, PA. Pseudomonas infections in children with human immunodeficiency virus infection. Pediatr Infect Dis J 1992;11:547553.CrossRefGoogle ScholarPubMed
26. Laing, FPY, Ramotar, K, Read, RR, et al. Molecular epidemiology of Xanthomonas maltophilia colonization and infection in the hospital environment. J Clin Microbiol 1995;33:513518.CrossRefGoogle ScholarPubMed