Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T11:41:29.003Z Has data issue: false hasContentIssue false

Rapidly Rising Prevalence of Nosocomial Multidrug-Resistant, Gram-Negative Bacilli: A 9-Year Surveillance Study

Published online by Cambridge University Press:  02 January 2015

Erika M. C. D'Agata*
Affiliation:
Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
*
Beth Israel Deaconess Medical Center, Division of Infectious Diseases, 330 Brookline Ave., East Campus Mailstop SL-435G, Boston, MA 02215

Abstract

Objective:

To examine and quantify the temporal trends of nosocomial multidrug-resistant, gram-negative bacilli.

Design:

A 9-year surveillance study was conducted. Multidrug resistance was defined as resistance to 3 or more antimicrobial classes.

Setting:

Tertiary-care institution.

Results:

From 1994 to 2002, multidrug-resistant, gram-negative bacilli increased from 1% to 16% for multidrug-resistant Pseudomonas aeruginosa, 4% to 13% for multidrug-resistant Enterobacter species, 0.5% to 17% for multidrug-resistant Klebsiella species, 0% to 9% for multidrug-resistant Proteus species, and 0.2% to 4% for multidrug-resistant Escherichia coli (P ≤ .05). The most common pattern of multidrug resistance was co-resistance to quinolones, third-generation cephalosporins, and aminoglycosides.

Conclusion:

The rapid rise of multidrug-resistant, gram-negative bacilli may warrant infection control programs to include these pathogens in strategies aimed at limiting the emergence and spread of antimicrobial-resistant pathogens.

Type
Orginal Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2004 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jarvis, WR, Edwards, JR, Culver, DH, et al. Nosocomial infection rates in adult and pediatric intensive care units in the United States: National Nosocomial Infection Surveillance System. Am J Med 1991;91:185S191S.10.1016/0002-9343(91)90367-7Google Scholar
2. Gales, AC, Jones, RN, Turnidge, JJ, Rennie, R, Ramphai, R. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis 2001;32:S146S155.10.1086/320186Google Scholar
3. Karlowsky, JA, Jones, ME, Thornsberry, C, Friedland, IR, Sahm, DE Trends in antimicrobial susceptibilities among Enterobacteriaceae isolates from hospitalized patients in the United States from 1998 to 2001. Antimicrob Agents Chemother 2003;47:16721680.10.1128/AAC.47.5.1672-1680.2003Google Scholar
4. Karlowsky, JA, Draghi, DC, Jones, ME, Thornsberry, C, Friedland, IR, Sahm, DE Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob Agents Chemother 2003;47:16811688.10.1128/AAC.47.5.1681-1688.2003Google Scholar
5. Livermore, DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst night mare? Clin Infect Dis 2002;34:634640.10.1086/338782Google Scholar
6. Bradford, PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001;14:933951.10.1128/CMR.14.4.933-951.2001Google Scholar
7. Nikaido, H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 1996;178:58535859.10.1128/jb.178.20.5853-5859.1996Google Scholar
8. Ziha-Zarifi, I, Lianes, C, Köhler, T, Pechere, J, Plesiat, P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa over-expressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother 1999;43:287291.10.1128/AAC.43.2.287Google Scholar
9. Leverstein-van Hall, MA, Blok, HEM, Donders, AR, et al. Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J Infect Dis 2003;187:251259.10.1086/345880Google Scholar
10. National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Villanova, PA: National Committee for Clinical Laboratory Standards; 1999.Google Scholar
11. D'Agata, E, Venkataraman, L, DeGirolami, P, Samore, M. Molecular epidemiology of acquisition of ceftazidime-resistant gram-negative strains in a non-outbreak setting. J Clin Microbiol 1997;35:26022605.10.1128/jcm.35.10.2602-2605.1997Google Scholar
12. Vollaard, EJ, Clasener, HA. Colonization resistance. Antimicrob Agents Chemother 1994;38:409414.10.1128/AAC.38.3.409Google Scholar
13. Lidsky, K, Hoyen, C, Salvator, A, Rice, LB, Toltzis, P. Antibiotic-resistant gram-negative organisms in pediatric chronic-care facilities. Clin Infect Dis 2002;34:760766.10.1086/338957Google Scholar
14. D'Agata, EM, Venkataraman, L, DeGirolami, P, Samore, M. Molecular epidemiology of ceftazidime-resistant gram-negative bacilli on inanimate surfaces and their role in cross-transmission during nonoutbreak periods. J Clin Microbiol 1999;37:30653067.10.1128/JCM.37.9.3065-3067.1999Google Scholar
15. Ojeniyi, B, Frederiksen, B, Hoiby, N. Pseudomonas aeruginosa cross-infection among patients with cystic fibrosis during a winter camp. Pediatr Pulmonol 2000;29:177181.10.1002/(SICI)1099-0496(200003)29:3<177::AID-PPUL4>3.0.CO;2-U3.0.CO;2-U>Google Scholar
16. Verweij, PE, Bijl, D, Melchers, WJ, et al. Pseudo-outbreak of multiresis-tant Pseudomonas aeruginosa in a hematology unit. Infect Control Hosp Epidemiol 1997;18:128131.10.2307/30142402Google Scholar
17. Tacconelli, E, Tumbarello, M, Bertagnolio, S, et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: analysis of trends in prevalence and epidemiology. Emerg Infect Dis 2002;8:220221.10.3201/eid0802.010121Google Scholar
18. Pirnay, JP, De Vos, D, Cochez, C, et al. Molecular epidemiology of Pseudomonas aeruginosa colonization in a burn unit: persistence of a multidrug-resistant clone and a silver sulfadiazine-resistant clone. J Clin Microbiol 2003;41:11921202.10.1128/JCM.41.3.1192-1202.2003Google Scholar
19. D'Agata, E, Venkataraman, L, DeGirolami, P, Weigel, L, Samore, M, Tenover, F. The molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae in a tertiary care hospital. J Infect 1998;36:279285.10.1016/S0163-4453(98)94171-8Google Scholar
20. Safdar, N, Maki, DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococci, gram-negative bacilli, Clostridium difficile, and Candida . Ann Intern Med 2002;136:834844.10.7326/0003-4819-136-11-200206040-00013Google Scholar
21. Arruda, EA, Marinho, IS, Boulos, M, et al. Nosocomial infections caused by multiresistant Pseudomonas aeruginosa . Infect Control Hosp Epidemiol 1999;20:620623.10.1086/501683Google Scholar
22. Eveillard, M, Schmit, JL, Eb, F. Antimicrobial use prior to the acquisition of multiresistant bacteria. Infect Control Hosp Epidemiol 2002;23:155158.10.1086/502029Google Scholar
23. Paterson, DL, Ko, WC, Von Gottberg, A, et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial infections. Ann Intern Med 2004;140:2632.10.7326/0003-4819-140-1-200401060-00008Google Scholar
24. D'Agata, EM, Venkataraman, L, DeGirolami, P, et al. Colonization with broad-spectrum cephalosporin-resistant gram-negative bacilli in intensive care units during a nonoutbreak period: prevalence, risk factors, and rate of infection. Crit Care Med 1999;27:10901095.10.1097/00003246-199906000-00026Google Scholar
25. Muto, CA, Jernigan, JA, Ostrowsky, BE, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus . Infect Control Hosp Epidemiol 2003;24:362386.10.1086/502213Google Scholar