Article contents
Predictors of Mortality Among Patients With Community-Onset Infection Due to Extended-Spectrum β-Lactamase-Producing Escherichia coli in Thailand
Published online by Cambridge University Press: 02 January 2015
Abstract
A matched case-control study was performed to identify predictors of mortality among patients (n = 46) with community-onset infections due to extended-spectrum β-lactamase-producing Escherichia coli in Thailand. The crude mortality rate was 30%. By multivariable analysis, community-onset bloodstream infection due to extended-spectrum β-lactamase-producing E. coli was the sole predictor of mortality (adjusted odds ratio, 41.3 [95% confidence interval, 4.3-69.4]; P = .001).
- Type
- Concise Communications
- Information
- Copyright
- Copyright © The Society for Healthcare Epidemiology of America 2008
References
1.Colodner, R, Rock, W, Chazan, B, et al.Risk factors for the development of extended-spectrum β-lactamase-producing bacteria in nonhospitali-zed Patients. Eur J Clin Microbiol Infect Dis 2004;23:163–167.CrossRefGoogle ScholarPubMed
2.Calbo, E, Romany, V, Xercavins, M, et al.Risk factors for community-onset urinary tract infections due to Escherichia coli harboring extended-spectrum β-lactamases. J Antimicrob Chemother 2005;57:780–783.Google Scholar
3.Apisarnthanarak, A, Kiratisin, P, Saifon, P, Kitphati, R, Dejsirilert, S, Mundy, LM. Clinical and molecular epidemiology of community-onset extended spectrum β-lactamase producing Escherichia coli in Thailand: a case-case-control study. Am J Infect Control 2007;35:606–612.CrossRefGoogle ScholarPubMed
4.Rodriguez-Bano, J, Navarro, MD, Romero, L, et al.Bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis 2006;43:1407–1414.CrossRefGoogle Scholar
5.Dejsirilert, S, Apisarnthanarak, A, Kitphati, R, et al.The status of antimicrobial resistance in Thailand among gram-negative pathogens in bloodstream infections: NARST data, 2000-2003. In: Program and abstracts of the 9th Western Pacific Congress on Chemotherapy and Infectious Diseases (Bangkok). 2004:185 (Abstract FP-A-3).Google Scholar
6.Apisarnthanarak, A, Danchaivijitr, S, Bailey, TC, et al.Inappropriate antibiotic use in a tertiary care center in Thailand: an incidence study and review of experience in Thailand. Infect Control Hosp Epidemiol 2006;27:416–420.Google Scholar
7.Garner, JS, Jarvis, WR, Emori, TG, et al.CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128–140.Google Scholar
8.Kollef, MH. Inadequate antimicrobial treatment: an important determinant of outcome for hospitalized Patients. Clin Infect Dis 2000;31(suppl 4):S131–S138.Google Scholar
9.Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Sixteenth Informational Supplement. Wayne, PA: CLSI; 2006:M100–S16.Google Scholar
10.Harris, AD, Samore, MH, Lipsitch, M, Kaye, KS, Perencevich, E, Carmeli, Y. Control-group selection importance in studies of antimicrobial resistance: examples applied to Pseudomonas aeruginosa, enterococci, and Escherichia coli. Clin Infect Dis 2002;34:1558–1563.CrossRefGoogle ScholarPubMed
- 12
- Cited by