Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T17:25:30.809Z Has data issue: false hasContentIssue false

Predictors and Molecular Epidemiology of Community-Onset Extended-Spectrum β-Lactamase–Producing Escherichia coli Infection in a Midwestern Community

Published online by Cambridge University Press:  02 January 2015

Ritu Banerjee*
Affiliation:
Mayo Clinic, Rochester, Minnesota
Jacob Strahilevitz
Affiliation:
Hadassah-Hebrew University, Jerusalem, Israel
James R. Johnson
Affiliation:
Veterans Affairs Medical Center and University of Minnesota, Minneapolis, Minnesota
Payai P. Nagwekar
Affiliation:
NorthShore University HealthSystem, Evanston, Illinois
Donna M. Schora
Affiliation:
NorthShore University HealthSystem, Evanston, Illinois
Ilene Shevrin
Affiliation:
University of Maryland Medical Center, Baltimore, Maryland
Hongyan Du
Affiliation:
NorthShore University HealthSystem, Evanston, Illinois
Lance R. Peterson
Affiliation:
NorthShore University HealthSystem, Evanston, Illinois
Ari Robicsek
Affiliation:
NorthShore University HealthSystem, Evanston, Illinois
*
Mayo Clinic, Division of Pediatric Infectious Diseases, 200 First Street SW, Rochester, MN 55905 ([email protected])

Abstract

Objective.

To identify predictors of community-onset extended-spectrum β-lactamase (ESBL)-producing Escherichia coli infection.

Design.

Prospective case-control study.

Setting.

Acute care hospitals and ambulatory clinics in the Chicago, Illinois, region.

Patients.

Adults with E. coli clinical isolates cultured in ambulatory settings or within 48 hours of hospital admission.

Methods.

Cases were patients with ESBL-producing E. coli clinical isolates cultured in ambulatory settings or within 48 hours of admission, and controls were patients with non-ESBL-producing E. coli isolates, matched to cases by specimen, location, and date. Clinical variables were ascertained through interviews and medical record review. Molecular methods were used to identify ESBL types, sequence type ST131, and aac(6′)-Ib-cr.

Results.

We enrolled 94 cases and 158 controls. Multivariate risk factors for ESBL-producing E. coli infection included travel to India in the past year (odds ratio [OR], 14.40 [95% confidence interval (CI), 2.92-70.95]), ciprofloxacin use (OR, 3.92 [95% CI, 1.90-8.1]), and age (OR, 1.04 [95% CI, 1.02-1.06]). Case isolates exhibited high prevalence of CTX-M-15 (78%), ST131 (50%), and aac(6′)-Ib-cr (66% of isolates with CTX-M-15).

Conclusions.

Providers should be aware of the increased risk of ESBL-producing E. coli infection among returned travelers, especially those from India.

Type
Original Article
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Marchaim, D, Gottesman, T, Schwartz, O, et al.National multicenter study of predictors and outcomes of bacteremia upon hospital admission caused by Enterobacteriaceae producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother 2010;54:50995104.CrossRefGoogle ScholarPubMed
2.DeKraker, M, Davey, P, Grundmann, H. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med 2011;8:e1001104.CrossRefGoogle Scholar
3.Tumbarello, M, Spanu, T, DiBidino, R, et al.Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum beta-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother 2010;54:40854091.CrossRefGoogle ScholarPubMed
4.Hawkey, P, Jones, A. The changing epidemiology of resistance. J Antimicrob Chemother 2009;64:i3i10.Google Scholar
5.Peirano, G, Pitout, J. Molecular epidemiology of Escherichia coli producing CTX-M-beta lactamases: the worldwide emergence of clone ST131 025:H4. Int J Antimicrob Agents 2009;35:316321.Google Scholar
6.Rodriguez-Bano, J, Alcalá, J, Cisneros, J, et al.Escherichia coli producing SHV-type extended-spectrum beta lactamase is a significant cause of community-acquired infection. J Antimicrob Chemother 2009;63:781784.CrossRefGoogle ScholarPubMed
7.Pitout, J, Nordmann, P, Laupland, K, Poirel, L. Emergence of Enterobacteriaceae producing extended-spectrum beta lactamases (ESBLs) in the community. J Antimicrob Chemother 2005; 56:5259.Google Scholar
8.Doi, Y, Park, Y, Rivera, J, et al.Community-associated extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli infection in the United States. Clin Inject Dis 2013;56:641648.Google Scholar
9.Livermore, D, Canton, R, Gniadkowski, M, et al.CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007; 59:165174.CrossRefGoogle ScholarPubMed
10.Albrechtova, K, Dolejska, M, Cizek, A, et al.Dogs of nomadic pastoralists in northern Kenya are reservoirs of plasmid-medi-ated cephalosporin- and quinolone-resistant Escherichia coli, including pandemic clone B2-025-ST131. Antimicrob Agents Chemother 2012;56:40134017.CrossRefGoogle Scholar
11.Geser, N, Stephan, R, Hachler, H. Occurrence and characteristics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet Res 2012;8:21.Google Scholar
12.Dolejska, M, Frolkova, P, Florek, M, et al.CTX-M-15 producing Escherichia coli clone B2-025b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plan efffluents. J Antimicrob Chemother 2011;66:27842790.CrossRefGoogle Scholar
13.Deshpande, P, Vadwai, V, Shetty, A, Dalai, R, Soman, R, Rodrigues, C. No NDM-1 carriage in healthy persons from Mumbai: reassuring for now. J Antimicrob Chemother 2012;67:10461047.Google Scholar
14.Yang, H, Chen, H, Yang, Q, Chen, M, Want, H. High prevalence of plasmid-mediated quinolone resistance genes qnr and aac(6′)-Ib-a in clinical isolates of Enterobacteriaceae from nine teaching hospitals in China. Antimicrob Agents Chemother 2008; 52:42684273.CrossRefGoogle Scholar
15.Lautenbach, E, Patel, J, Bilker, W, Edelstein, P, Fishman, N. Extended spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 2001;32:11621171.Google Scholar
16.Kang, C-I, Song, J-H, Chung, DR, et al. Risk factors and treatment outcomes of community-onset bacteraemia caused by extended-spectrum beta-lactamase-producing Escherichia coli. Int J Antimicrob Agents 2010;36:284287.Google Scholar
17.Ben-Ami, R, Rodriguez-Bano, J, Arslan, H, et al.A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing Enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 2009;49:682690.CrossRefGoogle ScholarPubMed
18.Calbo, E, Romani, V, Xercavins, M, et al.Risk factors for community-onset urinary tract infections due to Escherichia coli harbouring extended-spectrum beta-lactamases. J Antimicrob Chemother 2006;57:780783.Google Scholar
19.Rodriquez-Bano, J, Alcalá, J, Cisneros, J, et al. Community infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Arch Intern Med 2008;168:18971902.Google Scholar
20.Colodner, R, Rock, W, Chazan, B, et al.Risk factors for the development of extended-spectrum beta-lactamase-producing bacteria in nonhospitalized patients. Eur J Clin Microbiol Infect Dis 2004;23:163167.CrossRefGoogle ScholarPubMed
21.Laupland, K, Church, D, Vidakovich, J, Mucenski, M, Pitout, J. Community-onset extended-spectrum beta-lactamase (ESBL) producing Escherichia coli: importance of international travel. J Infect 2008;57:441448.CrossRefGoogle ScholarPubMed
22.Johnson, J, Johnston, B, Clabots, C, Kuskowski, M, Castanheira, M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 2010;51:286294.Google Scholar
23.Nicolas-Chanoine, M-H, Blanco, J, Leflon-Guibout, V, et al.Intercontinental emergence of Escherichia coli clone 025:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008;61: 273281.CrossRefGoogle Scholar
24.Cagnacci, S, Gualco, L, Debbia, E, Schito, G, Marchese, A. European emergence of ciprofloxacin-resistant Escherichia coli clonal groups 025:H4-ST131 and 015:K52:H1 causing community-acquired uncomplicated cystitis. J Clin Microbiol 2008;46:26052612.Google Scholar
25.Kang, C-I, Wi, YM, Lee, MY, et al.Epidemiology and risk factors of community-onset infections caused by extended spectrum beta lactamase producing Escherichia coli strains. J Clin Microbiol 2012;50:312317.CrossRefGoogle ScholarPubMed
26.Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Nineteenth Informational Supplement (M100-S19). Wayne, PA: CLSI, 2009.Google Scholar
27.Xu, L, Ensor, V, Gossain, S, Nye, K, Hawkey, P. Rapid and simple detection of blaCTX.M genes by multiplex PCR assay. J Med Microbiol 2005;54:11831187.Google Scholar
28.Johnson, J, Menard, M, Johnston, B, Kuskowski, M, Nichol, K, Zhanel, G. Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002-2004. Antimicrob Agents Chemother 2009;53:27332739.Google Scholar
29.Warburg, G, Korem, M, Robicsek, A, et al.Changes in aac(6′)-Ib-cr prevalence and fluoroquinolone resistance in nosocomial isolates of Escherichia coli collected from 1991-2005. Antimicrob Agents Chemother 2009;53:12681270.CrossRefGoogle Scholar
30.Pregibon, D. Data analytic methods for matched case-control studies. Biometrics 1984;40:639651.Google Scholar
31.Hosmer, DW, Lemeshow, S. Applied Logistic Regression. New York: Wiley, 1989.Google Scholar
32.Freeman, JT, McBride, SJ, Heffernan, H, Bathgate, T, Pope, C, Ellis-Pegler, RB. Community-onset genitourinary tract infection due to CTX-M-15 producing Escherichia coli among travelers to the Indian subcontinent in New Zealand. Clin Infect Dis 2008;47: 689692.CrossRefGoogle Scholar
33.Kennedy, K, Collignon, P. Colonisation with Escherichia coli resistant to “critically important” antibiotics: a high risk for international travellers. Eur J Clin Microbiol Infect Dis 2010;29: 15011506.CrossRefGoogle ScholarPubMed
34.Weisenberg, S, Mediavilla, J, Chen, L, et al.Extended spectrum beta-lactamase producing Enterobacteriaceae in international travelers and non-travelers in New York City. PloS ONE 2012; 7:e45141.CrossRefGoogle ScholarPubMed
35.Tande, D, Boirame-Gastrin, S, Munck, MR, et al.Intrafamilial transmission of extended-spectrum beta-lactamase-producing Escherichia coli and Salmonella enterica Babelsberg among the families of internationally adopted children. J Antimicrob Chemother 2010;65:859865.CrossRefGoogle ScholarPubMed
36.Diwan, V, Chandran, S, Tamhankar, A, Lundborg, CS, Macaden, R. Identification of extended-spectrum beta-lactamase and quin-olone resistance genes in Escherichia coli isolated from hospital wastewater from central India. J Antimicrob Chemother 2012;67: 857859.CrossRefGoogle ScholarPubMed
37.Rodrigues, C, Shukla, S, Jog, S, Mehta, A. Extended-spectrum beta-lactamase-producing flora in healthy persons. Emerg Infect Dis 2005;11:981982.CrossRefGoogle Scholar
38.Tangden, T, Cars, O, Melhus, A, Lowdin, E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother 2010;54:35643568.CrossRefGoogle Scholar
39.Tham, J, Odenholt, I, Walder, M, Brolund, A, Ahl, J, Melander, E. Extended spectrum beta-lactamase-producing Escherichia coli in patients with travellers' diarrhoea. Scand J Infect Dis 2010;42: 275280.Google Scholar
40.Dhanji, H, Patel, R, Wall, R, et al.Variation in the genetic environments of blaCTX.M-15 in Escherichia colt from the faeces of travellers returning to the United Kingdom. J Antimicrob Chemother 2011;66:10051012.CrossRefGoogle Scholar
41.Robicsek, A, Strahilevitz, J, Jacoby, GA, et al.Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006;12:8388.CrossRefGoogle ScholarPubMed
42.Park, C, Robicsek, A, Jacoby, G, Sahm, D, Hooper, D. Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin modifying enzyme. Antimicrob Agents Chemother 2006;50:39533955.Google Scholar
43.Pitout, JDD, Campbell, L, Church, DL, Gregson, DB, Laupland, KB. Molecular characteristics of travel-related extended-spectrum beta-lactamase-producing Escherichia coli isolates from the Calgary Health Region. Antimicrob Agents Chemother 2009;53: 25392543.CrossRefGoogle ScholarPubMed
44.Kaye, KS, Harris, AD, Samore, M, Carmeli, Y. The case-case-control study design: addressing the limitations of risk factor studies for antimicrobial resistance. Infect Control Hosp Epidemiol 2005;26:346351.Google Scholar
45.Harris, A, Samore, M, Lipsitch, M, Kaye, K, Perencevich, E, Carmeli, Y. Control-group selection importance in studies of antimicrobial resistance: examples applied to Pseudomonas aeruginosa, enterococci, and Escherichia coli. Clin Infect Dis 2002;34:15581563.Google Scholar