Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Goodman, Katherine E.
Simner, Patricia J.
Klein, Eili Y.
Kazmi, Abida Q.
Gadala, Avinash
Toerper, Matthew F.
Levin, Scott
Tamma, Pranita D.
Rock, Clare
Cosgrove, Sara E.
Maragakis, Lisa L.
and
Milstone, Aaron M.
2019.
Predicting probability of perirectal colonization with carbapenem-resistant Enterobacteriaceae (CRE) and other carbapenem-resistant organisms (CROs) at hospital unit admission.
Infection Control & Hospital Epidemiology,
Vol. 40,
Issue. 05,
p.
541.
Pryor, R.
Godbout, E.J.
and
Bearman, G.
2020.
Precision infection prevention: the next frontier in patient safety.
Journal of Hospital Infection,
Vol. 105,
Issue. 2,
p.
232.
Falini, Stefano
Angelotti, Giovanni
and
Cecconi, Maurizio
2020.
ICU management based on big data.
Current Opinion in Anaesthesiology,
Vol. 33,
Issue. 2,
p.
162.
Salinas, Jorge L.
Kritzman, Jeffrey
Kobayashi, Takaaki
Edmond, Michael B.
Ince, Dilek
and
Diekema, Daniel J.
2020.
A primer on data visualization in infection prevention and antimicrobial stewardship.
Infection Control & Hospital Epidemiology,
Vol. 41,
Issue. 8,
p.
948.
Hossain, M. Anwar
Ferdousi, Rahatara
and
Alhamid, Mohammed F.
2020.
Knowledge-driven machine learning based framework for early-stage disease risk prediction in edge environment.
Journal of Parallel and Distributed Computing,
Vol. 146,
Issue. ,
p.
25.
BAYIN DONAR, Gamze
2020.
Dijital epidemiyoloji.
Türkiye Halk Sağlığı Dergisi,
Vol. 18,
Issue. 2,
p.
192.
Marra, Alexandre R.
Alzunitan, Mohammed
Abosi, Oluchi
Edmond, Michael B.
Street, W. Nick
Cromwell, John W.
and
Salinas, Jorge L.
2020.
Modest Clostridiodes difficile infection prediction using machine learning models in a tertiary care hospital.
Diagnostic Microbiology and Infectious Disease,
Vol. 98,
Issue. 2,
p.
115104.
Peiffer-Smadja, N.
Rawson, T.M.
Ahmad, R.
Buchard, A.
Georgiou, P.
Lescure, F.-X.
Birgand, G.
and
Holmes, A.H.
2020.
Machine learning for clinical decision support in infectious diseases: a narrative review of current applications.
Clinical Microbiology and Infection,
Vol. 26,
Issue. 5,
p.
584.
Godbout, Emily J.
Madaline, Theresa
Casadevall, Arturo
Bearman, Gonzalo
and
Pirofski, Liise-anne
2020.
The damage response framework and infection prevention: From concept to bedside.
Infection Control & Hospital Epidemiology,
Vol. 41,
Issue. 3,
p.
337.
Koch, Gilbert
Pfister, Marc
Daunhawer, Imant
Wilbaux, Melanie
Wellmann, Sven
and
Vogt, Julia E.
2020.
Pharmacometrics and Machine Learning Partner to Advance Clinical Data Analysis.
Clinical Pharmacology & Therapeutics,
Vol. 107,
Issue. 4,
p.
926.
Luz, C.F.
Vollmer, M.
Decruyenaere, J.
Nijsten, M.W.
Glasner, C.
and
Sinha, B.
2020.
Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies.
Clinical Microbiology and Infection,
Vol. 26,
Issue. 10,
p.
1291.
Roth, Jan A
Radevski, Gorjan
Marzolini, Catia
Rauch, Andri
Günthard, Huldrych F
Kouyos, Roger D
Fux, Christoph A
Scherrer, Alexandra U
Calmy, Alexandra
Cavassini, Matthias
Kahlert, Christian R
Bernasconi, Enos
Bogojeska, Jasmina
and
Battegay, Manuel
2021.
Cohort-Derived Machine Learning Models for Individual Prediction of Chronic Kidney Disease in People Living With Human Immunodeficiency Virus: A Prospective Multicenter Cohort Study.
The Journal of Infectious Diseases,
Vol. 224,
Issue. 7,
p.
1198.
Li, Xiaohong
Zhang, Yanling
Li, Yujuan
Yu, Ke
and
Du, Yihua
2021.
Study of E-business applications based on big data analysis in modern hospital health management.
Information Systems and e-Business Management,
Vol. 19,
Issue. 2,
p.
621.
AL-Hashimi, Mukhtar
and
Hamdan, Allam
2021.
The Importance of New Technologies and Entrepreneurship in Business Development: In The Context of Economic Diversity in Developing Countries.
Vol. 194,
Issue. ,
p.
830.
Kovacs, Dory
Msanga, Delfina R.
Mshana, Stephen E.
Bilal, Muhammad
Oravcova, Katarina
and
Matthews, Louise
2021.
Developing practical clinical tools for predicting neonatal mortality at a neonatal intensive care unit in Tanzania.
BMC Pediatrics,
Vol. 21,
Issue. 1,
Barchitta, M.
Maugeri, A.
Favara, G.
Riela, P.M.
Gallo, G.
Mura, I.
and
Agodi, A.
2021.
A machine learning approach to predict healthcare-associated infections at intensive care unit admission: findings from the SPIN-UTI project.
Journal of Hospital Infection,
Vol. 112,
Issue. ,
p.
77.
Pasma, Wietze
Wesselink, Esther M.
van Buuren, Stef
de Graaff, Jurgen C.
and
van Klei, Wilton A.
2021.
Artifacts annotations in anesthesia blood pressure data by man and machine.
Journal of Clinical Monitoring and Computing,
Vol. 35,
Issue. 2,
p.
259.
Mujahid, Omer
Contreras, Ivan
and
Vehi, Josep
2021.
Machine Learning Techniques for Hypoglycemia Prediction: Trends and Challenges.
Sensors,
Vol. 21,
Issue. 2,
p.
546.
van Mourik, Maaike S.M.
van Rooden, Stephanie M.
Abbas, Mohamed
Aspevall, Olov
Astagneau, Pascal
Bonten, Marc J.M.
Carrara, Elena
Gomila-Grange, Aina
de Greeff, Sabine C.
Gubbels, Sophie
Harrison, Wendy
Humphreys, Hilary
Johansson, Anders
Koek, Mayke B.G.
Kristensen, Brian
Lepape, Alain
Lucet, Jean-Christophe
Mookerjee, Siddharth
Naucler, Pontus
Palacios-Baena, Zaira R.
Presterl, Elisabeth
Pujol, Miquel
Reilly, Jacqui
Roberts, Christopher
Tacconelli, Evelina
Teixeira, Daniel
Tängdén, Thomas
Valik, John Karlsson
Behnke, Michael
and
Gastmeier, Petra
2021.
PRAISE: providing a roadmap for automated infection surveillance in Europe.
Clinical Microbiology and Infection,
Vol. 27,
Issue. ,
p.
S3.
Sakly, Houneida
Said, Mourad
Seekins, Jayne
and
Tagina, Moncef
2022.
Multidisciplinarity and Interdisciplinarity in Health.
Vol. 6,
Issue. ,
p.
525.