Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T14:34:21.917Z Has data issue: false hasContentIssue false

Hospital Infection Prevention and Control: A Model for Improving the Quality of Hospital Care in Low- and Middle-Income Countries

Published online by Cambridge University Press:  02 January 2015

W. Charles Huskins*
Affiliation:
Department of Pediatrics, Harvard Medical School, Bostom, Massachusetts Dwmom of Infectious Diseases, Children's Hospital, Boston, Massachusetts
Barbara M. Soule
Affiliation:
Sisters of Providence Health System, Providence St Peter Hospital, Olympia, Washington
Carol O'Boyle
Affiliation:
Acute Disease Epidemiology, Minnesota Department of Health, Minneapolis, Minnesota
László Gulácsi
Affiliation:
Hungarian Society for Quality Assurance in Health Care, Debrecen, Hungary
Edward J. O'Rourke
Affiliation:
Department of Pediatrics, Harvard Medical School, Bostom, Massachusetts Dwmom of Infectious Diseases, Children's Hospital, Boston, Massachusetts
Donald A. Goldmann
Affiliation:
Department of Pediatrics, Harvard Medical School, Bostom, Massachusetts Dwmom of Infectious Diseases, Children's Hospital, Boston, Massachusetts
*
International Hospital Infection Prevention and Quality Assessment Program, Division of Infectious Diseases, Children's Hospital, 300 Longwood Ave, Boston, MA 02115

Abstract

Continuous quality improvement (CQI) is a powerful methodology for improving clinical outcomes and patient satisfaction while reducing inefficiency and costs. However, most hospitals in low- and middle-income countries have little experience with CQI methods. Hospital infection prevention is an ideal model for nascent efforts to improve the quality of hospital care because of its proven efficacy in reducing the occurrence of infections that compromise patient outcomes and increase costs. This article describes the design and implementation of a demonstration project to reduce the incidence of surgical-site infections (SSIs) for hospitals with little experience with quality-improvement methods. The project has a high likelihood of producing measurable reductions in SSI rates and hospital costs related to inefficient use of perioperative antimicrobial prophylaxis. Moreover, participating staff will gain experience that can be applied to efforts to improve the quality of other aspects of hospital care.

Type
Beyond Infection Control: The New Hospital Epidemiology
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. World Bank. World Development Report 1993: Investing in Health. New York, NY: Oxford University Press; 1993.Google Scholar
2. Barnum, H, Kutzin, J. Public Hospitals in Developing Countries: Resource Use, Cost, Financing. Baltimore, MD: The Johns Hopkins University Press; 1993.Google Scholar
3. Berwick, DM. Continuous improvement as an ideal in health care. N Engl J Med 1989;320:5356.CrossRefGoogle ScholarPubMed
4. Decker, MD. The application of continuous quality improvement to healthcare. Infect Control Hosp Epidemiol 1992;13:226229.Google Scholar
5. Klazinga, N. Concerted action programme on quality assurance in hospitals 1990-1993: global results of the evaluation. Int J Qual Health Care 1994;6:219230.Google Scholar
6. Berwick, DM, Godfrey, AB, Roessner, J. Curing Health Care: New Strategies for Quality Improvement. San Francisco, CA: Jossey-Bass Publishers; 1990.Google Scholar
7. Rhinehart, E, Goldmann, DA, O'Rourke, EJ. Adaptation of Centers for Disease Control guidelines for the prevention of nosocomial infection in a pediatric intensive care unit in Jakarta, Indonesia. Am J Med 1991;91(suppl 3B):213S220S.CrossRefGoogle Scholar
8. Huskins, WC, O'Rourke, EJ, Rhinehart, E, Goldmann, DA. Infection control in countries with limited resources. In: Mayhall, CG, ed. Hospital Epidemiology and Infection Control. Baltimore, MD: Williams & Wilkins; 1995:11761200.Google Scholar
9. Mayon-White, RT, Ducel, G, Kereselidze, T, Tikomirov, E. An international survey of the prevalence of hospital-acquired infection. J Hosp Infect 1988;11:4348.CrossRefGoogle ScholarPubMed
10. Sramova, H, Bartonova, A, Bolek, S, Krecmerova, M, Subertova, V. National prevalence survey of hospital-acquired infections in Czechoslovakia. J Hosp Infect 1988;11:328334.Google Scholar
11. Pall, G, Petras, G. Information data on the incidence of nosocomial infections in Hungary. Orv Hetil 1990;131:14111414.Google ScholarPubMed
12. Daniel, SO. An epidemiological study of nosocomial infections at the Lagos University Teaching Hospital. Public Health 1977;91:1318.Google Scholar
13. Srisupan, V, Senaratana, W, Pichiansathien, W, Tongsawas, T. Nosocomial infections in Maharaj Nakhon Chiang Mai Hospital 1987. J Med Assoc Thai 1989;72(suppl 2):711.Google Scholar
14. Sithikesorn, J, Lumpikanon, P, Bunma, P, Patjanasuntorn, B. Nosocomial infections in Srinagarind Hospital. J Med Assoc Thai 1989;72(suppl 2):1214.Google ScholarPubMed
15. Paganini, JM, Novaes, HM. Desarrollo y foralecimiento de los sistemas locales de salud. La garantia de calidad. El control de infecciones hospitalarias. HSD/SILOS-12. Washington, DC: Pan American Health Organization/World Health Organization; 1991.Google Scholar
16. Wagner, MB, Petrillo, V, Gay, V, Fagundes, GR. A prevalence survey of nosocomial infection in a Brazilian hospital. J Hosp Infect 1990;15:379381.Google Scholar
17. Lima, NL, Pereira, CR, Souza, IC, Facanha, MC, Lima, AA, Guerrant, RL, et al. Selective surveillance for nosocomial infections in a Brazilian hospital. Infect Control Hosp Epidemiol 1993;14:197202.CrossRefGoogle Scholar
18. Hammami, A, Arlet, G, Ben Redjeb, S, Grimont, F, Ben Hassen, A, Rekik, A, et al. Nosocomial outbreak of acute gastroenteritis in a neonatal intensive care unit in Tunisia caused by multiply drug resistant Salmonella wien producing SHV-2 beta-lactamase. Eur J Clin Microbiol Infect Dis 1991;10:641646.CrossRefGoogle Scholar
19. Sirinavin, S, Hotrakitya, S, Suprasongsin, C, Wannaying, B, Pakeecheep, S, Vorachit, M. An outbreak of Salmonella urbana infection in neonatal nurseries. J Hosp Infect 1991;18:231238.CrossRefGoogle ScholarPubMed
20. Banerjee, M, Sahu, K, Bhattacharya, S, Adhya, S, Bhowmick, P, Chakraborty, P. Outbreak of neonatal septicemia with multidrug resistant Klebsiella pneumoniae . Indian J Pediatr 1993;60:2527.Google Scholar
21. Thomas, A, Lalitha, MK, Jesudason, MV, John, S. Transducer related Enterobacter cloacae sepsis in post-operative cardiothoracic patients. J Hosp Infect 1993;25:211214.Google Scholar
22. Adeyemo, AA, Akindele, JA, Omokhodion, SI. Klebsiella septicaemia, osteomyelitis and septic arthritis in neonates in Ibadan, Nigeria. Ann Trop Paediatr 1993;13:285289.Google Scholar
23. Stephen, M, Lalitha, MK. An outbreak of Serratia marcescens infection among obstetric patients. Indian J Med Res 1993;97:202205.Google Scholar
24. Sader, HS, Pignatari, AC, Leme, IL, Burattini, MN, Tancresi, R, Holllis, RJ, et al. Epidemiologic typing of multiply drug-resistant Pseudomonas aeruginosa isolated from an outbreak in an intensive care unit. Diagn Microbiol Infect Dis 1993;17:1318.Google Scholar
25. Murphy, SA, Lowe, B, Maghenda, JK, Apollo, JG. An outbreak of intravenous cannulae associated nosocomial septicaemia due to multidrug-resistant Klebsiella pneumoniae . East Afr Med J 1994;71:271,272.Google ScholarPubMed
26. Velandia, M, Fridkin, SK, Cardenas, V, Boshell, J, Ramirez, G, Bland, L, et al. Transmission of HIV in dialysis centre. Lancet 1995;345:14171422.CrossRefGoogle ScholarPubMed
27. Sanders, CC, Sanders, WE Jr. Beta-lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin Infect Dis 1992;15:824839.Google Scholar
28. Casellas, JM, Blanco, MG, Pinto, ME. The sleeping giant: antimicrobial resistance. Infect Dis Clin North Am 1994;8:2945.Google Scholar
29. Pannuti, CS, Grinbaum, RS. An overview of nosocomial infection control in Brazil. Infect Control Hosp Epidemiol 1995;16:170174.Google Scholar
30. Ponce-de-Leon, S. The needs of developing countries and the resources required. J Hosp Infect 1991;18(suppl A):376381.CrossRefGoogle ScholarPubMed
31. Haley, RW, Culver, DH, White, JW, Morgan, WM, Emori, TG, Munn, VP, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol 1985;121:182205.CrossRefGoogle ScholarPubMed
32. Wenzel, RP. The economics of nosocomial infections. J Hosp Infect 1995;31:7997.CrossRefGoogle ScholarPubMed
33. Wey, SB, Cardo, DM, Halker, E, Carratu, F, Saes, AC. Distribution and analysis of 8,268 nosocomial infections at the Hospital Sao Paulo: 19851989. Rev Hosp Sao Paulo 1989;1:169174.Google Scholar
34. Cavalcante, MD, Braga, OB, Teofilo, CH, Oliveira, EN, Alves, A. Cost improvements through the establishment of prudent infection control practices in a Brazilian general hospital, 1986-1989. Infect Control Hosp Epidemiol 1991;12:649653.Google Scholar
35. Starling, CEF, Pinheiro, SMC, Couto, BRGM. Vigilancia Epidemiologica das Infeccoes Hospitalares na Pratica Diaria. Belo Horizonte, MG: Edicoes Cuatiara; 1993.Google Scholar
36. Dellinger, EP, Gross, PA, Barrett, TL, Krause, PJ, Martone, WJ, McGowan, JE, et al. Quality standard for antimicrobial prophylaxis in surgical procedures. Infect Control Hosp Epidemiol 1994;15:182188.Google Scholar
37. Classen, DC, Evans, RS, Pestotnik, SI, Horn, SD, Menlove, RL, Burke, JP. The timing of prophylactic administration of antibiotics and the risk of surgical wound infection. N Engl J Med 1992;326:281286.Google Scholar
38. Langley, GJ, Nolan, KM, Nolan, TW. The Foundation of Improvement. Silver Spring, MD: API Publishing; 1992.Google Scholar
39. Culver, DH, Horan, TC, Gaynes, RP, Martone, WJ, Jarvis, WR, Emori, TG, et al. Surgical wound infection rates by wound class, operative procedure, and patient risk index. Am J Med 1991;91(suppl 3B):152S157S.Google Scholar
40. Cruse, PJE, Foord, R. The epidemiology of wound infection: a 10-year prospective study of 62,939 wounds. Surg Clin North Am 1980;60:2740.Google Scholar
41. Olson, MM, Lee, JT Jr. Continuous, 10-year wound infection surveillance: results, advantages, and unanswered questions. Arch Surg 1990;125:794803.Google Scholar
42. Condon, RE, Schulte, WJ, Malangoni, MA, Anderson-Teschendorf, MJ. Effectiveness of a surgical wound surveillance program. Arch Surg 1983;118:303307.Google Scholar
43. Horan, TC, Gaynes, RP, Martone, WJ, Jarvis, WR, Emori, TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Am J Infect Control 1992;20:271274.CrossRefGoogle ScholarPubMed
44. Society for Hospital Epidemiology of America, Association for Practitioners in Infection Control, Centers for Disease Control, Surgical Infection Society. Consensus paper on the surveillance of surgical wound infections. Infect Control Hosp Epidemiol 1992;13:599605.Google Scholar
45. Altemeier, WA, Burke, JF, Sandusky, WR. Manual on Control of Infection in Surgical Patients. Philadelphia, PA: JB Lippincott Co; 1984.Google Scholar
46. Gulácsi, L, Kis, ST, Goldmann, DA, Huskins, WC. Surgical site infection rates for frequently performed procedures in Hungarian hospitals. Infect Control Hosp Epidemiol 1997;18:P26. Abstract.Google Scholar
47. Sellick, JA. The use of statistical process control charts in hospital epidemiology. Infect Control Hosp Epidemiol 1993;14:649656.Google Scholar
48. Kaminsky, FC, Benneyan, JC, Davis, RB, Burke, RJ. Statistical control charts based on a geometric distribution. Journal of Quality Technology 1992;24:6369.Google Scholar
49. Zaza, S, Jarvis, WR. Investigation of outbreaks. In: Mayhall, CG, ed. Hospital Epidemiology and Infection Control. Baltimore: Williams & Wilkins; 1995:105113.Google Scholar
50. Jacquez, GM, Waller, LA, Grimson, R, Wartenberg, D. The analysis of disease clusters, part I: state of the art. Infect Control Hosp Epidemiol 1996;17:319327.Google Scholar
51. Jacquez, GM, Grimson, R, Waller, LA, Wartenberg, D. The analysis of disease clusters, part II: introduction to techniques. Infect Control Hosp Epidemiol 1996;17:385397.CrossRefGoogle ScholarPubMed
52. Mayhall, CG. Surgical infections including burns. In: Wenzel, RP, ed. Prevention and Control of Nosocomial Infections, 2nd ed. Baltimore, MD: Williams & Wilkins; 1993:614664.Google Scholar
53. Durbin, W Jr., Lapidas, B, Goldmann, DA. Improved antibiotic usage following introduction of a novel prescription system. JAMA 1981;246:17961800.Google Scholar
54. Kritchevsky, SB, Simmons, BP. Continuous quality improvement: concepts and applications for physician care. JAMA 1991;266:18171823.CrossRefGoogle Scholar
55. National Nosocomial Infections Surveillance System. Nosocomial infection rates for interhospital comparison: limitations and possible solutions. Infect Control Hosp Epidemiol 1991;12:609621.Google Scholar
56. National Nosocomial Infections Surveillance System. National Nosocomial Infection Surveillance (NNIS) semi-annual report, May 1995. Am J Infect Control 1995;23:377385.CrossRefGoogle Scholar