Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T18:25:09.990Z Has data issue: false hasContentIssue false

Descriptive statistics and advanced text analytics: A dual extension

Published online by Cambridge University Press:  14 December 2021

Emily D. Campion*
Affiliation:
Old Dominion University, Strome College of Business
Michael A. Campion
Affiliation:
Purdue University, Krannert School of Management
*
*Corresponding author. Email: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Commentaries
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Society for Industrial and Organizational Psychology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antons, D., Joshi, A. M., & Salge, T. O. (2019). Content, contribution, and knowledge consumption: Uncovering hidden topic structure and rhetorical signals in scientific texts. Journal of Management, 45(7), 30353076. https://doi.org/10.1177/0149206318774619 CrossRefGoogle Scholar
Banks, G. C., Woznyi, H. M., Wesselen, R. S., Frear, K. A., Berka, G., Heggestad, E. D., & Gordon, H. L. (2019). Strategic recruitment across borders: An investigation of multinational enterprises. Journal of Management, 45(2), 476509. https://doi.org/10.1177/0149206318764295 CrossRefGoogle Scholar
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 9931022.Google Scholar
Campion, M. C., Campion, M. A., Campion, E. D., & Reider, M. H. (2016). Initial investigation into computer scoring of candidate essays for personnel selection. Journal of Applied Psychology, 101(7), 958975. https://doi.org/10.1037/apl0000108 CrossRefGoogle ScholarPubMed
Hannigan, T. R., Haans, R. F., Vakili, K., Tchalian, H., Glaser, V. L., Wang, M. S., Kaplan, S., & Jennings, P. D. (2019). Topic modeling in management research: Rendering new theory from textual data. Academy of Management Annals, 13(2), 586632. https://doi.org/10.5465/annals.2017.0099 CrossRefGoogle Scholar
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25(2–3), 259284. https://doi.org/10.1080/01638539809545028 CrossRefGoogle Scholar
Min, H., Peng, Y., Shoss, M., & Yang, B. (2021). Using machine learning to investigate the public’s emotional responses to work from home during the COVID-19 pandemic. Journal of Applied Psychology, 106(2), 214229. https://doi.org/10.1037/apl0000886 CrossRefGoogle ScholarPubMed
Murphy, K. (2021). In praise of table 1: The importance of making better use of descriptive statistics. Industrial and Organizational Psychology: Perspectives on Science and Practice, 14(4), 461477.Google Scholar
Speer, A. B. (2018). Quantifying with words: An investigation of the validity of narrative-derived performance scores. Personnel Psychology, 71(3), 299333. https://doi.org/10.1111/peps.12263 CrossRefGoogle Scholar
Zhang, C., Yu, M. C., & Marin, S. (2021). Exploring public sentiment on enforced remote work during COVID-19. Journal of Applied Psychology, 106(6), 797810. http://dx.doi.org/10.1037/apl0000933 CrossRefGoogle ScholarPubMed