Published online by Cambridge University Press: 22 November 2017
I am concerned about industrial and organizational (I-O) psychology's relevance to the gig economy, defined here as the broad trends toward technology-based platform work. This sort of work happens on apps like Uber (where the app connects drivers and riders) and sites like MTurk (where human intelligence tasks, or HITs, are advertised to workers on behalf of requesters). We carry on with I-O research and practice as if technology comprises only things (e.g., phones, websites, platforms) that we use to assess applicants and complete work. However, technology has much more radically restructured work as we know it, to happen in a much more piecemeal, on-demand fashion, reviving debates about worker classification and changing the reality of work for many workers (Sundararajan, 2016). Instead of studying technology as a thing we use, it's critical that we “zoom out” to see and adapt our field to this bigger picture of trends towards a gig economy. Rather than a phone being used to check work email or complete pre-hire assessments, technology and work are inseparable. For example, working on MTurk requires constant Internet access (Brawley, Pury, Switzer, & Saylors, 2017; Ma, Khansa, & Hou, 2016). Alarmingly, some researchers describe these workers as precarious (Spretizer, Cameron, & Garrett, 2017), dependent on an extremely flexible (a label that is perhaps euphemistic for unreliable) source of work. Although it's unlikely that all workers consider their “gig” a full time job or otherwise necessary income, at least some workers do: An estimated 10–40% of MTurk workers consider themselves serious gig workers (Brawley & Pury, 2016). Total numbers for the broader gig economy are only growing, with recent tax-based estimates including 34% of the US workforce now and up to 43% within 3 years (Gillespie, 2017). It appears we're seeing some trends in work reverse and return to piece work (e.g., a ride on Uber, a HIT on MTurk) as if we've simply digitized the assembly line (Davis, 2016). Over time, these trends could accelerate, and we could potentially see total elimination of work (Morrison, 2017).
Thanks to Ann Marie Ryan for assistance with this research.