Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T22:31:42.026Z Has data issue: false hasContentIssue false

X-ray Cavities and Cooling Flows

Published online by Cambridge University Press:  30 March 2016

Paul E. J. Nulsen
Affiliation:
School of Engineering Physics, University of Wollongong, Wollongong NSW 2522, Australia, and Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
Brian R. McNamara
Affiliation:
Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
Laurence P. David
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
Michael W. Wise
Affiliation:
Massachusetts Institute of Technology, Center for Space Research, 70 Vassar St, Building 37, Cambridge, MA 02139, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent data have radically altered the X-ray perspective on cooling flow clusters. X-ray spectra show that very little of the hot intra-cluster medium is cooler than about 1 keV, despite having short cooling times. In an increasing number of cooling flow clusters, the lobes of a central radio source are found to have created cavities in the hot gas. Generally, the cavities are not overpressured relative to the intra-cluster gas, but act as buoyant bubbles of radio emitting plasma that drive circulation as they rise, mixing and heating the intra-cluster gas. All this points to the radio source, i.e., an active galactic nucleus, as the heat source that prevents gas from cooling to low temperatures. However, heating due to bubbles alone seems to be insufficient, so the energetics of cooling flows remain obscure. We briefly review the data and theory supporting this view and discuss the energetics of cooling flows.

Type
I. Joint Discussions
Copyright
Copyright © Astronomical Society of Pacific 2005

References

Blanton, E. L., Sarazin, C. L., McNamara, B. R., & Wise, M. W., 2001, ApJ, 558, L15 CrossRefGoogle Scholar
Böhringer, H., Voges, W., Fabian, A. C., Edge, A. C., & Neumann, D. M. 1993, MNRAS, 264, L25 CrossRefGoogle Scholar
Bregman, J. N., & David, L. P. 1988, ApJ, 326, 639 CrossRefGoogle Scholar
Brighenti, F., & Mathews, W. G. 2003, ApJ, 587, 580 CrossRefGoogle Scholar
Brüggen, M., Kaiser, C. R., Churazov, E., & Enfilin, T. A. 2002, MNRAS, 331, 545 CrossRefGoogle Scholar
Burns, J. O. 1990, AJ, 99, 14 CrossRefGoogle Scholar
Churazov, E., Sunyaev, R., Forman, W., & Böhringer, H. 2002, MNRAS, 332, 729 CrossRefGoogle Scholar
Crawford, C. S., Allen, S. W., Ebeling, H., Edge, A. C., & Fabian, A. C. 1999, MNRAS, 306, 857 CrossRefGoogle Scholar
David, L. P., Nulsen, P. E. J., McNamara, B. R., Forman, W. R., Jones, C., Ponman, T., & Robertson, B., Wise, M. 2001, ApJ, 557, 546 CrossRefGoogle Scholar
Edge, A. C. 2001, MNRAS, 328, 762 CrossRefGoogle Scholar
Fabian, A. C. 1994, ARA&A, 32, 277 Google Scholar
Fabian, A. C. et al. 2000, MNRAS, 318, L65 CrossRefGoogle Scholar
Fabian, A. C., Mushotzky, R. F., Nulsen, P. E. J., Peterson, J. R. 2001, MNRAS, 321, 20P CrossRefGoogle Scholar
Fabian, A. C. et al. 2003, MNRAS, in press (astro-ph/0306036)Google Scholar
Finoguenov, A., & Jones, C. 2001, ApJ, 547, L107 CrossRefGoogle Scholar
Heinz, S., Choi, Y.-Y., Reynolds, C. S., & Begelman, M. C. 2002, ApJ, 569, L79 CrossRefGoogle Scholar
Kraft, R. P., Vázquez, S. E., Forman, W. R., Jones, C., Murray, S. S., Hardcastle, M.J., Worrall, D. M., & Churazov, E. 2003, ApJ, 592, 129 CrossRefGoogle Scholar
Markevitch, M. et al. 2003, ApJ, 586, L19 CrossRefGoogle Scholar
Mathews, W. G., & Brighenti, F. 2003, ARA&A, 41, 191 Google Scholar
Mazzotta, P., Kaastra, J. S., Paerels, F. B., Ferrigno, C., Colafrancesco, S., Mewe, R., & Forman, W. R. 2002, ApJ, 567, L37 CrossRefGoogle Scholar
McGlynn, T. A., & Fabian, A. C. 1984, MNRAS, 208, 709 CrossRefGoogle Scholar
McNamara, B. R. et al. 2000, ApJ, 534, L135 CrossRefGoogle Scholar
McNamara, B. R. et al. 2001, ApJ, 562, L149 CrossRefGoogle Scholar
Mittaz, J. P. D. et al. 2001, A&A, 365, L98 Google Scholar
Motl, P. M., Burns, J. O., Loken, C., Norman, M. L., & Bryan, G. 2004, ApJ, 606, 635 CrossRefGoogle Scholar
Nulsen, P. E. J., David, L. P., McNamara, B. R., Jones, C., Forman, W. R., Wise, M. 2002, ApJ, 568, 163 CrossRefGoogle Scholar
Peterson, J. R., Kahn, S. M., Paerels, F. B. S., Kaastra, J. S., Tamura, T., Bleeker, J., Ferrigno, A. M., Jernigan, J. G. 2003, ApJ, 590, 207 CrossRefGoogle Scholar
Peres, C. B., Fabian, A. C., Edge, A. C., Allen, S. W., Johnstone, R. M., White, D. A. 1998, MNRAS, 298, 416 CrossRefGoogle Scholar
Schindler, S., Castillo-Morales, A., De Filippis, E., Schwope, A., Wambsganss, J. 2001, A&A, 376, L27 Google Scholar
White, D. A., Jones, C., Forman, W.R. 1997, MNRAS, 292, 419 CrossRefGoogle Scholar
Zakamska, N. L., & Narayan, R. 2003, ApJ, 582, 162 CrossRefGoogle Scholar