Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T00:41:09.261Z Has data issue: false hasContentIssue false

The Star Formation History of Damped Lyman-Alpha Systems

Published online by Cambridge University Press:  30 March 2016

Arthur M. Wolfe*
Affiliation:
University of California, San Diego, CASS, 9500 Gilman Drive, La Mia, CA, 92093-0424

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The C II* technique for measuring star formation rates (SFRs) in damped Lya systems (DLAs) is described. We measure cooling rates of the gas from the strength of C II* 1335.7 absorption lines, and infer heating rates by assuming the gas is heated by the grain photoelectric mechanism. Since the heating rates depend on the intensity of FUV radiation, we deduce the SFRs per unit area, which are comparable to the value in the Milky Way disk. From DLA statistics we obtain the SFRs per unit comoving volume at z=[1.6,4.5], which are similar to the rates in Lyman Break Galaxies. Implications such as the presence of a two-phase medium, metal production, and feedback processes are described. The model is tested and found to be consistent with observations.

Type
I. Joint Discussions
Copyright
Copyright © Astronomical Society of Pacific 2005

References

Bakes, E. L. O. & Tielens, A. G. G. M. 1994, ApJ, 427, 822 CrossRefGoogle Scholar
Garnett, D. R., Shields, G. A., Skillman, E. D., Sagan, S. P., & Dufour, R. J., 1997, ApJ, 489, 63 Google Scholar
Howk, J. C., Wolfe, A. M., & Prochaska, J. X. 2005, ApJ, 622, 81 Google Scholar
Hauser, M. G., & Dwek, E. 2001, ARA&A, 39, 249 Google Scholar
Nagamine, K., Springel, V., & Hernquist, L. 2004, MNRAS, 348, 435 (astro-ph/0305409)Google Scholar
Peebles, P. J. E. 1993, Principles of Physical Cosmology, Princeton: Princeton University Press, p. 562 Google Scholar
Pei, Y. C., Fall, S. M., & Hauser, M. G. 1999, ApJ, 522, 604 CrossRefGoogle Scholar
Pettini, M., Smith, L. J., Hunstead, R. W., & King, D. L. 1994, ApJ, 426, 79 Google Scholar
Pottasch, S. R., Wesselius, P. R., & van Duinen, R. J. 1979, A&A, 77, 189 Google Scholar
Somerville, R. S., Primack, J. R. & Faber, S. M. 2001, MNRAS, 320, 540 Google Scholar
Springel, V. & Hernquist, L. 2003, MNRAS, 339, 312 Google Scholar
Steidel, C.C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M. 1999, ApJ, 519, 1 Google Scholar
Storrie-Lombardi, L. J., & Wolfe, A. M. 2000, ApJ, 543, 552 CrossRefGoogle Scholar
Wolfe, A. M., Prochaska, J. X., & Gawiser, E. 2003, ApJ, 593, 215 (WPG)Google Scholar
Wolfe, A. M., Gawiser, E., & Prochaska, J. X. 2003, ApJ, 593, 125 (WGP)Google Scholar
Wolfire, M. G., Hollenbach, D., McKee, C. F., Tielens, A. G. G. M., & Bakes, E. L. O. 1995, ApJ, 443, 152 Google Scholar
Wyse, R. F. G., Gilmore, G., & Franx, M. 1997, ARA&A, 35, 637 Google Scholar