Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T22:35:13.220Z Has data issue: false hasContentIssue false

Some Problems and Instrumental Features of Submillimeter Astronomy

Published online by Cambridge University Press:  30 March 2016

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Modern astronomy includes optical, ultraviolet, infrared and, in recent years, radio, γ-ray, and X-ray astronomy. Such a classification is justified to a certain degree. In fact, the difference in wavelength ranges causes a distinction in the methods and techniques of receiving radiation. Also, the solution of specific problems requires observation in different wavelength regions. In this respect it is possible to describe a new astronomical branch, the submillimeter one.

The submillimeter range is intermediate between the infrared and microwave regions, as shown in Table 1. The boundaries of this region are not very definite. Some authors include in the submillimeter range the wavelengths longer than 50 microns, others, those longer than 100 microns. The long wavelength edge of the range is also diffuse. Formally it is a wavelength of 1 mm, but in some cases the 2-mm or 4-mm wavelengths are also included in the submillimeter range. The measurements of submillimeter receiver performances are sometimes carried out at wavelengths up to 8 mm. The uncertainty of the boundaries is very understandable: their shifting depends on the methods of generation, transmission, and detection of radiation. In this review paper, following Martin’s (1962, 1963) terminology, wavelengths between 50 microns and 2 mm will be attributed to the submillimeter range.

Type
Joint Discussions
Copyright
Copyright © Reidel 1968

References

Anaškin, O.N., Belickij, B.M., Brodskij, V.B., Kurnosova, L.V., Razorenov, L.A., Sidjakina, T.M. Mihailov, N.M., Fradkin, M.I. (1967) Lebedev Phys. Inst., preprint, June.Google Scholar
Arams, F., Allen, C., Peyter, B., Sard, E. (1966) P.I.E.E.E., 54, 183.Google Scholar
Baldock, R.V., Bastin, J.A., Clegg, P.E., Emery, R., Gaitskell, J.N., Gear, A.E. (1965) Astro-phys. J., 141, 1289.Google Scholar
Bastin, J.A., Gear, A.E., Jones, G.O., Smith, H.J.T., Wright, P.J. (1964) Proc. R. Soc. London A 278, 543.Google Scholar
Bater, M., Cameron, R.M., Burroughs, W.J., Gebbie, H.A. (1967) Nature, 214, 377.CrossRefGoogle Scholar
Besson, J., Carro, R., Matteoli, M., Papoular, R., Phillppeau, B. (1965) Onde Elect., 45, 107.Google Scholar
Cohn, M., Wentworth, F.L., Wiltse, J.E. (1963) P.I.E.E.E., 51, 1227.Google Scholar
Colleman, P.D. (1963) IEEE Trans., Microw. Theory Techn., 11, 271.Google Scholar
Drjagin, Yu.A., Kisljakov, A.G., Kukin, L.M., Naumov, A.J., Fedoseev, L.I. (1966) Izv. VUZOV, Radiofizika, 9, 1078.Google Scholar
Field, G.D., Hitchcock, J.L. (1966) Phys. Rev. Lett., 16, 817.Google Scholar
Fedoseev, L.I. (1966) Izv. VUZO V, Radiofizika, 9.Google Scholar
Gay, J., Lequeux, J., Turon, P. (1967) Obs. Paris-Meudon, preprint, July.Google Scholar
Gorohov, N.A., Drjagin, Yu.A., Fedoseev, L.I. (1962) Izv. VUZOV, Radiofizika, 5, 413.Google Scholar
Kardašev, N.S. (1959) Astr. Zu., 3, 813.Google Scholar
Karlov, N.V., Čihačev, B.M. (1959) Radioteh. Elektron., 4, 1647: 1052.Google Scholar
Karlov, N.V., Prohorov, A.M. (1964) Radioteh. Elektron., 9, 2088.Google Scholar
Karlova, E.K., Karlov, N.V. (1966) Pribory Tehn. Experimen., 2, 19.Google Scholar
Kisljakov, A.G., Plečkov, V.M. (1964) Izv. VUZOV, Radiofizika, 1, 46.Google Scholar
Low, F.J. (1961) J. Opt. Soc. Am., 51, 1300.Google Scholar
Martin, D.H. (1962) Contemp. Phys., 4, 139; (1963) 4, 187.Google Scholar
Penzias, R.A., Wilson, R.W. (1965) Astrophys. J., 142, 419.Google Scholar
Putley, E.H. (1963) P.I.E.E.E., 51, 1412.Google Scholar
Putley, E.H. (1965) Appl. Opt., 4, 649.Google Scholar
Popov, E.J. (1965) Izv. VUZOV, Radiofizika, 8, 862.Google Scholar
Puzanov, V.I., Salomonovič, A.E., Stankevič, V.S. (1967) Rep. 13 Gen. Assemb., IAU, Prague; (1967) Astr. Zu., 44, 1128.Google Scholar
Rall, P.G., Wilkinson, D.T. (1966) Phys. Rev. Lett., 16, 405.Google Scholar
Rollin, B.V. (1961) Proc. Phys. Soc., 77, 1102.Google Scholar
Salomonovič, A.E. (1964) Dissertation, Phys. Inst. Lebedev.Google Scholar
Soročenko, R.L., Borodzič, E.V., Dravskih, Z.V., Dravskih, A.F., Kolbasov, V.A. (1964) Rep. 12 Gen. Assemb., IAU, Hamburg.Google Scholar
Straiton, A.W., Tolbert, C.W. (1960) P.I.R.E., 5, 898.Google Scholar
Thaddeus, P., Clauser, J.F. (1966) Phys. Rev. Lett., 16, 819.Google Scholar
Vinogradov, E., Dianov, N.A. (1967) J.E.T.P. Lett, (in press).Google Scholar
Williams, R.A., Chang, W.S.C. (1963) IEEE Trans., Microw. Theory Techn. 11, 513.Google Scholar
Woolf, N.J., Hoffmann, W.F., Frederick, C.L., Low, F.J. (1967) Report on Discussion Meeting on Infrared Astronomy, London, May.Google Scholar
Wort, R.J.H. (1962) Nature, 195, 4848.Google Scholar
Zeldovič, J.B. (1966) Usp.fiz. Nauk., 89, 647. (In this review paper see bibliography of problems.)Google Scholar
Ževakin, S.A., Naumov, A.P. (1963) Izv. VUZOV, Radiofizika, 6, 674.Google Scholar