Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T00:45:22.603Z Has data issue: false hasContentIssue false

Nucleosynthesis in Population III Supernovae

Published online by Cambridge University Press:  30 March 2016

K. Nomoto
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
K. Maeda
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
H. Umeda
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
N. Tominaga
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars more massive than ~ 20–25 M⊙ form a black hole at the end of their evolution. Stars with non-rotating black holes are likely to collapse ”quietly” ejecting a small amount of heavy elements (Faint supernovae). In contrast, stars with rotating black holes are likely to give rise to very energetic supernovae (Hypernovae). Nucleosynthesis in Hypernovae is characterized by larger abundance ratios (Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe than normal supernovae, which can explain the observed trend of these ratios in extremely metal-poor stars. Nucleosynthesis in Faint supernovae is characterized by a large amount of fall-back. We show that the abundance pattern of the recently discovered most Fe-poor star, HE0107-5240, and other extremely metal-poor carbon-rich stars are in good accord with those of black-hole-forming supernovae, but not pair-instability supernovae. This suggests that black-hole-forming supernovae made important contributions to the early Galactic (and cosmic) chemical evolution as the First (Pop III) Supernovae.

Type
I. Joint Discussions
Copyright
Copyright © Astronomical Society of Pacific 2005

References

Aoki, W., Ryan, S.G., Beers, T.C., & Ando, H. 2002, ApJ, 567, 1166 CrossRefGoogle Scholar
Audouze, J., & Silk, J. 1995, ApJ, 451, L49 Google Scholar
Blake, L.A.J., et al. 2001, Nucl. Phys. A, 688, 502 CrossRefGoogle Scholar
Boothroyd, A.I., & Sackmann, I.-J. 1999, ApJ, 510, 217 Google Scholar
Christlieb, N., et al. 2002, Nature, 419, 904 Google Scholar
Depagne, E., et al. 2002, A&A, 390, 187 Google Scholar
Heger, A., & Woosley, S.E. 2002, ApJ, 567, 532 CrossRefGoogle Scholar
Maeda, K., Nakamura, T., Nomoto, K., et al. 2002, ApJ, 565, 405 CrossRefGoogle Scholar
Maeda, K., & Nomoto, K. 2003, ApJ, 598, 1163 (astro-ph/0304172)Google Scholar
Maeda, K., Mazzali, P.A., Deng, J., Nomoto, K., et al. 2003, ApJ, 593, 931 Google Scholar
McWilliam, A., Preston, G.W., Sneden, C., & Searle, L. 1995, AJ, 109, 2757 CrossRefGoogle Scholar
Nakamura, T., et al. 2001, ApJ, 555, 880 Google Scholar
Nomoto, K., et al. 2003a, in IAU Symp 212, p.395 (astro-ph/0209064)Google Scholar
Nomoto, K., et al. 2003b, in Stellar Collapse (astro-ph/0308136)Google Scholar
Norris, J.E., Ryan, S.G., & Beers, T.C. 2001, ApJ, 561, 1034 Google Scholar
Primas, F., et al. 2000, in The First Stars, eds. Weiss, A., et al. (Springer, 51 Google Scholar
Ryan, S.G., Norris, J.E., & Beers, T.C. 1996, ApJ, 471, 254 Google Scholar
Schneider, R., Ferrara, A., Natarajan, P., & Omukai, K. 2002, ApJ, 571, 30 Google Scholar
Shigeyama, T., & Tsujimoto, T. 1998, ApJ, 507, L135 CrossRefGoogle Scholar
Sneden, C., Gratton, R.G., & Crocker, D.A. 1991, A&A, 246, 354 Google Scholar
Umeda, H., & Nomoto, K. 2002, ApJ, 565, 385 CrossRefGoogle Scholar
Umeda, H., & Nomoto, K. 2003, Nature, 422, 871 CrossRefGoogle Scholar
Umeda, H., & Nomoto, K. 2005, ApJ, 619, 427 (astro-ph/0308029), http://supernova.astron.s.u-tokyo.ac.jp/~umeda/data.html Google Scholar
Zampieri, L., et al. 2004, ApJ, 603, 523 (astro-ph/0310057)Google Scholar