Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T00:40:39.626Z Has data issue: false hasContentIssue false

Molecular Absorption Lines in Galaxies

Published online by Cambridge University Press:  30 March 2016

Tommy Wiklind*
Affiliation:
ESA Space Telescope Division STScI, 3700 San Martin Dr, Baltimore MD 21218, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Molecular absorption lines have become an important tool in studying the astrochemistry of the dense and cold interstellar medium in both our own Galaxy and high redshift systems. The sensitivity is to first order only dependent on the observed continuum flux. Apart from a few nearby galaxies, molecular absorption lines have been used to study the molecular ISM in 4 galaxies at redshifts 0.25-0.89. A large number of molecular species and transitions have been observed, allowing a detailed comparison with molecular gas in our own Galaxy. Planned instruments, such as ALMA, will allow studies of a larger number of molecular absorption line systems.

Type
I. Joint Discussions
Copyright
Copyright © Astronomical Society of Pacific 2005

References

Combes, F. & Wiklind, T. 1998, A&A, 334, L81 Google Scholar
Combes, F., Wiklind, T. & Nakai, N. 1997, A&A, 327, L17 Google Scholar
Combes, F. & Wiklind, T. 1997, ApJ, 486, L79 Google Scholar
Combes, F. & Wiklind, T. 1996, in Cold Gas at High Redshift, eds. Bremer, M. van der Werf, P. & Carilli, C., (Kluwer)Google Scholar
Combes, F. & Wiklind, T. 1995, A&A, 303, L61 Google Scholar
Eckart, A., Cameron, A., Genzel, R., et al. 1990, ApJ, 365, 522 Google Scholar
Gardner, F.F. & Whiteoak, J.B. 1976, MNRAS, 175, 9p Google Scholar
Israel, F.P., van Dishoeck, E.F., Baas, F., de Grauuw, T. & Phillips, T.G. 1991, A&A, 245, L13 Google Scholar
Kanekar, N., Chengalur, J.N., de Bruyn, A.G. & Narisimha, D. 2003, MNRAS, 345, L7 CrossRefGoogle Scholar
Liszt, H.S. & Lucas, R. 2002, A&A, 391, 693 Google Scholar
Lucas, R. & Liszt, H.S. 2002, A&A, 384, 1054 Google Scholar
Lucas, R. & Liszt, H.S. 1996, A&A, 307, 237 Google Scholar
Menten, K.M., Carilli, C.L. & Reid, M.J. 1999, in Highly Redshifted Radio Lines, ASP Conf. Series Vol. 156, eds. Carilli, C. L. Menten, K. M., & Langston, G.I. p. 218 Google Scholar
Merrill, P.W. 1934, PASP, 46, 206 Google Scholar
Pagani, L., Olofsson, O.A.H., Bergman, P., et al. 2003, A&A, 403, L77 Google Scholar
Rickard, L.J., Palmer, P., Morris, M., Turner, B.E. & Zuckerman, B. 1975, ApJ, 199, L75 Google Scholar
Roberts, H. & Herbst, E. 2003, A&A, 395, 233 Google Scholar
Russell, H.N. 1935, MNRAS, 95, 635 Google Scholar
Solomon, P.M. & de Zafra, R. 1975, ApJ, 199, L75 CrossRefGoogle Scholar
Swings, P. & Rosenfeld, L. 1937, ApJ, 86, 483 Google Scholar
Whiteoak, J.B. & Gardner, F.F. 1976a, MNRAS, 174, 51p Google Scholar
Whiteoak, J.B. & Gardner, F.F. 1976b, MNRAS, 176, 25p Google Scholar
Whiteoak, J.B. & Gardner, F.F. 1975, ApJ, 195, L81 Google Scholar
Whiteoak, J.B. & Gardner, F.F. 1973, Astrophys. Lett., 15, 211 Google Scholar
Wiklind, T. 2003, in The Carnegie Centennial Symposium IV: The Formation and Evolution of the Elements, eds. McWilliams, A. & Rauch, M. Wiklind, T. & Combes, F. 1999, in Highly Redshifted Radio Lines, ASP Conf. Series Vol. 156, eds. Carilli, C. L. Menten, K. M., & Langston, G.I., p. 202 Google Scholar
Wiklind, T. & Combes, F. 1998, ApJ, 500, 129 Google Scholar
Wiklind, T. & Combes, F. 1997a, A&A, 324, 51 Google Scholar
Wiklind, T. & Combes, F. 1997b, A&A, 328, 48 Google Scholar
Wiklind, T. & Combes, F. 1996a, Nature, 379, 139 CrossRefGoogle Scholar
Wiklind, T. & Combes, F. 1996b, A&A, 315, 86 Google Scholar
Wiklind, T. & Combes, F. 1995, A&A, 299, 382 Google Scholar
Wiklind, T. & Combes, F. 1994, A&A, 286, L9 Google Scholar