Published online by Cambridge University Press: 30 March 2016
It has long been recognized that the analysis of occultation traces from point source stars might provide a means of investigating the structure of the lunar limb on a remarkably small scale, certainly of tens of meters, possibly on a scale of meters.
The routine process of analysis of such an occultation trace produces a curve fitted to the standard model for a point source, in which the observed rate of fringe passage is matched to that computed from the rate and position angle of the relative motion of the moon with respect to the star background and the position angle of the point at which the occultation occurs. If θυ is the position angle towards which the relative motion of the lunar center takes place, θ that at which the occultation occurs, and ψ = θν — θ, then the predicted rate of the lunar limb perpendicular to itself at this point is
Rp = V cos ψ
where V is the velocity of the lunar center.