Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T21:28:42.298Z Has data issue: false hasContentIssue false

Gamma Rays from Solar Flares

Published online by Cambridge University Press:  14 August 2015

Natalie Mandzhavidze
Affiliation:
Universities Space Research Association, Lab. for High Energy Astrophysics, NASA/GSFC
Reuven Ramaty
Affiliation:
Lab. for High Energy Astrophysics, NASA/GSFCGreenbelt MD 20771, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review recent results obtained from the analysis of the solar flare gamma ray line emission:

  • (a) The gamma ray derived ambient elemental abundances show that the First Ionization Potential (FIP) effect already sets in at relatively low altitudes in the solar atmosphere.

  • (b) The composition of the flare accelerated particles that produce the gamma rays exhibit heavy element and 3He abundance enhancements that are typical for impulsive flares. Unlike the solar energetic particle (SEP) observations in interplanetary space, the gamma ray method allows us to trace the time development of these enhancements.

  • (c) Solar flare gamma ray spectroscopy provides the most direct measure of the abundances of the two very high FIP elements, He and Ne, in subcoronal regions leading to somewhat higher abundances than the generally accepted values.

  • (d) The high intensities of the aa lines observed from a number of flares imply a high (≳ 0.1) ambient He/H and/or accelerated α/p.

  • (e) There are indications for the isotopic fractionation of He from the photosphere to corona that has important implications on the mechanism of solar wind acceleration, the protosolar deuterium abundance and Galactic chemical evolution.

Type
II. Joint Discussions
Copyright
Copyright © Kluwer 1998

References

1. Ramaty, R. & Mandzhavidze, N. (1996) High Energy Solar Physics, eds. Ramaty, R., Mandzhavidze, N. & Hua, X.-M., AIP Conf. Proc. 374, (AIP, New York), 533 Google Scholar
2. Share, G.H. & Murphy, R.J. (1995) ApJ, 452, 933 CrossRefGoogle Scholar
3. Ramaty, R., Mandzhavidze, N., Kozlovsky, B. & Murphy, R.J. (1995) ApJ, 445, L193 Google Scholar
4. Ramaty, R., Mandzhavidze, N. & Kozlovsky, B. (1996) High Energy Solar Physics, eds. Ramaty, R., Mandzhavidze, N. & Hua, X.-M., AIP Conf. Proc. 374, (AIP, New York), 172 Google Scholar
5. Meyer, J.-P. (1996) Cosmic Abundances, eds. Holt, S.S. & Sonneborn, G., ASP Conf. Series 99, (ASP, San Francisco), 127 Google Scholar
6. Reames, D.V. (1995) Adv. Space Res., 15, (7) 41 CrossRefGoogle Scholar
7. Miller, J.A., et al. (1997) JGR, 102, A7, 14631 Google Scholar
8. Ramaty, R., Mandzhavidze, N., Barat, C. & Trottet, G. (1997) ApJ, 479, 458 CrossRefGoogle Scholar
9. Ramaty, R., Mandzhavidze, N., Kozlovsky, B. & Skibo, J.G. (1993) Adv. Space Res. 13, (9) 275CrossRefGoogle Scholar
10. Mandzhavidze, N., Ramaty, R. & Kozlovsky, B. (1997) ApJ Letters, in press (November 1 issue)Google Scholar
11. Kozlovsky, B. & Ramaty, R. (1974) ApJ, 191, L43 CrossRefGoogle Scholar
12. Share, G.H. & Murphy, R.J. (1997) ApJ, 485, 409 CrossRefGoogle Scholar
13. Hernandez, F.P. & Christensen-Dalsgaard, J. (1994) Mon. Not. R. Astron. Soc, 169, 475 CrossRefGoogle Scholar
14. Bahcall, J.N. & Pinsonneault, M.H. (1995) Rev. Mod. Phys., 67, 781 CrossRefGoogle Scholar
15. Coplan, M.A., Ogilvie, K.W., Bochsler, P. & Geiss, J. (1990) Solar Phys., 128, 195 CrossRefGoogle Scholar
16. Grevesse, N., Noels, A. & Sauval, A.J. (1996) Cosmic Abundances, eds. Holt, S.S., & Sonneborn, G., ASP Conf. Series, 99, (ASP, San Francisco), 117 Google Scholar
17. Hansteen, V.H., Leer, E. & Holzer, T.E. (1997) ApJ, 482, 498 CrossRefGoogle Scholar
18. Geiss, J., et al. (1972) Appolo Preliminary Science Report, NASA SP-315, section 14Google Scholar
19. Bodmer, R., Bochsler, P., Geiss, J., Von Steiger, G. k Gloeckler, G. (1994) Space Sci. Rev., 72, 61 Google Scholar
20. Hua, X-M. & Lingenfelter, R.E. (1987) Solar Phys. 107, 351 CrossRefGoogle Scholar
21. Gautier, D. & Morel, P. (1997) A&A, 323, L9 Google Scholar
22. Nieman, H.B., et al. (1996) Science, 272, 846 Google Scholar
23. Linsky, J.L., et al. (1993) ApJ, 402, 694 CrossRefGoogle Scholar