Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T15:29:02.626Z Has data issue: false hasContentIssue false

Earth Rotation Variations from Hours to Centuries

Published online by Cambridge University Press:  30 March 2016

Jean O. Dickey*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology Pasadena, California 91109-8099, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of Earth rotation encompasses the complex nature of orientation changes, the excitation of these changes and their geophysical implications in a broad variety of areas. Studies have embarked on a new era with the advent of highly accurate space geodetic techniques and the increasing availability of complementary geophysical data sets. This paper provides an overview of Earth rotation variations from hours to centuries with a brief discussion of polar motion and nutation results.

Type
I. Invited Discourses
Copyright
Copyright © Kluwer 1995

References

Anderson, J.D., and Rosen, R.D., The Latitude-Height Structure of 40-50 Day Variations in Atmospheric Angular Momentum, J. Atmos, Sci., 40, 15841591, 1983.2.0.CO;2>CrossRefGoogle Scholar
Baader, H.R., Brosche, P., and Hovel, W., Ocean Tides and Periodic Variations of the Earth’s Rotation, J. Geophys., 52, 140142, 1983.Google Scholar
Barnes, R.T.H. Hide, R. White, A.A., and Wilson, C.A., Atmospheric Angular Momentum Fluctuations, Length of Day Changes and Polar Motion, Proc. R. Soc. Lon., 387, 3173, 1983.Google Scholar
Barnett, T.P., The Interaction of Multiple Time Scales in the Tropical Climate System, J. Climate, 4, 269, 1991.2.0.CO;2>CrossRefGoogle Scholar
Beutler, G., and Broekman, E., eds, Proceedings of the 1993 International GPS Service for Geodynamics (IGS) Workshop, Druckerei der Universität Bern, 1993.Google Scholar
Brosche, P., and Wünsch, J., On the Rotational Angular Momentum of the Oceans and the Corresponding Polar Motion, Astron. Nach., 315, 181188, 1994.CrossRefGoogle Scholar
Brosche, P. U.Seiler, Sündermann, J. and Wünsch, J., Periodic Changes in Earth’s Rotation due to Oceanic Tides, Astron. Astrophys., 220, 318320, 1991.Google Scholar
Brosche, P., Wünsch, J., Campbell, J. and Schuh, H., Ocean Tide Effects in Universal Time detected by VLBI, Astron., Astrophys., 245, 676682, 1991.Google Scholar
Capitaine, N., “Corrections to Some Terms of Nutation Deduced from the Paris Astrolabe Observations,” in Nutation and the Earth’s Rotation, eds. Federov, E.P. Smith, M.L. and Bender, P.L., 8794, 1980.CrossRefGoogle Scholar
Cazenave, A. (ed.), Earth Rotation: Solved and Unsolved Problems, NATO Advanced Institute Series C: Mathematical and Physical Sciences Vol. 187 ed. Cazenave, A., Reidel, D., Boston, 1986.CrossRefGoogle Scholar
Chao, B.F., Interannual Length of Day Variations with Relation to the SouthernOscillation/El Niño, Geophys. Res. Letts., 11, 541544, 1984.CrossRefGoogle Scholar
Chao, B.F., Correlation of Interannual Lengths-of-Day Variation with El Niño/Southern Oscillation, 1972-1986, J. Geophys. Res., 93, B7, 77097715, 1988.CrossRefGoogle Scholar
Chao, B.F., Length-of-Day Variations Caused by El Niño/Southern Oscillation and the Quasi-Biennial Oscillation, Science, 243, 923925, 1989.CrossRefGoogle ScholarPubMed
Chao, B.F., and Au, A.Y., Atmospheric Excitation of the Earth’s Annual Wobble, 1980-1988, J. Geophys. Res., 96, 65776582, 1991.CrossRefGoogle Scholar
Chen, W.Y., Assessment of Southern Oscillation Sea-Level Pressure Indices, Mon. Weather Rev., 110, 800807, 1982.2.0.CO;2>CrossRefGoogle Scholar
Cheng, M.K., Eanes, R.J., Shum, C.K. Schutz, B.E., and Tapley, B.D., Temporal Variation in Low Degree Zonal Harmonics from Starlette Orbit Analysis, Geophys. Res. Lett., 16, 393396, 1989.CrossRefGoogle Scholar
Cheng, M.K., Eanes, R.J., Tapley, B.D., Tidal Deceleration of the Moon’s Mean Motion, Geophys. J. Intern., 108, 401409, 1991.CrossRefGoogle Scholar
Clark, T.A., Ryan, J.W., and Baver, K.D., ERDE: High Resolution Observations of Earth Orientation Parameters by Very Long Baseline Interferometry, EOS, Trans. Amer. Geophys. Union, 71, 1271, 1990.Google Scholar
Dickey, J.O., Atmospheric Excitation of the Earth’s Rotation: Progress and Prospects via Space Geodesy, in Contributions of Space Geodesy to Geodynamics: Earth Dynamics, Geodyn. Ser., vol. 24, edited by Smith, D.E. and Turcotte, D.L., pp. 5570, AGU, Washington, D.C, 1993.CrossRefGoogle Scholar
Dickey, J.O., High Time Resolution Measurements of Earth Rotation, Advances in Space Research, 13, 185196 1993.CrossRefGoogle Scholar
Dickey, J.O., and Eubanks, T.M., The Application of Space Geodesy to Earth Orientation Studies, Space Geodesy and Geodynamics (eds.) by Anderson, A.J. and Cazenave, A., Academic Press, New York, 221269, 1986.Google Scholar
Dickey, J.O., and Feissel, M., eds., Results from the SEARCH’92 Campaign, International Earth Rotation Service Technical Note 16, Observatoire de Paris, Paris, 1994. Google Scholar
Dickey, J.O., Eubanks, T.M., and Hide, R., Interannual and Decade Fluctuations in the Earth’s Rotation, Variations in the Earth’s Rotation, Geophysical Monograph Series of the American Geophysical Union, Washington D.C, McCarthy, D. (ed.), 157162, 1990.Google Scholar
Dickey, J.O., Ghil, M., and Marcus, S.L., Extratropical Aspects of the 40-50 Day Oscillation in Length-of-Day and Atmospheric Angular Momentum, J. Geophys. Res., 96, 22, 643-22, 658, 1991. Google Scholar
Dickey, J.O., Marcus, S.L. and R.Hide, , Global Propagation of Interannual Fluctuations in Atmospheric Angular Momentum, Nature, 357, 484488, 1992a.CrossRefGoogle Scholar
Dickey, J.O., Marcus, S.L. Steppe, J.A. and Hide, R., The Earth’s Angular Momentum Budget on Subseasonal Time Scales, Science, 255, 321324, 1992b.CrossRefGoogle ScholarPubMed
Dickey, J.O., Marcus, S.L. Eubanks, T.M., and Hide, R., Climate Studies via Space Geodesy: Relationships Between ENSO and Interannual Length-of-Day Variations, in Interactions Between Global Climate Subsystems: The Legacy of Hann, Geophys. Monogr. Ser., vol. 75, edited by McBean, G.A. and Hantel, M., pp. 141155, AGU, Washington D.C, 1993a.CrossRefGoogle Scholar
Dickey, J.O., Marcus, S.L. Johns, C.M. Hide, R. and Thompson, S.R., The Oceanic Contribution to the Earth’s Seasonal Angular Momentum Budget, Geophys. Res. Lett,20, 29532956, 1993b.CrossRefGoogle Scholar
Dickey, J.O., Bender, P.L. Faller, J.E., Newhall, X X,Ricklefs, R.L. Ries, J.G. Shelus, P.J. Veillet, C. Whipple, A.L. Wiant, J.R. Williams, J.G., and Yoder, C.F., Lunar Laser Ranging: A Continuing Legacy of the Apollo Program, Science, 265, 482490, 1994a.CrossRefGoogle ScholarPubMed
Dickey, J.O., Marcus, S.L. Hide, R. Eubanks, T.M., and Boggs, D.H., Angular Momentum Exchange Among the Solid Earth, Atmosphere, and Oceans: A Case Study of the 1982-83 El Niño Event, J. Geophys. Res., 99, B12, 23, 921-23, 937, 1994b.Google Scholar
Dickey, J.O., Clark, T.A. Eubanks, T.M. Feissel, M. Melbourne, W.G. Ray, J.R. Salstein, D.A. Schutz, B.E., and Veillet, C., SEARCH’92 Campaign, An Overview, International Earth Rotation Service Technical Note 16, Observatoire de Paris, Paris, 1994c.Google Scholar
Dickman, S.R., Ocean Tides for Satellite Geodesy, Mar. Geod., 14, 2156, 1991.CrossRefGoogle Scholar
Dickman, S.R., Dynamic Ocean Tide Effects on Earth’s Rotation, Geophys. J. Int., 112, 448470, 1993.CrossRefGoogle Scholar
Eubanks, T.M., Variations in the Orientation of the Earth, in Contributions of Space Geodesy to Geodynamics: Earth Dynamics, Geodyn. Ser., vol. 24, edited by Smith, D.E. and Turcotte, D.L., pp. 154, AGU, Washington, D.C, 1993.CrossRefGoogle Scholar
Eubanks, T.M., Steppe, J.A. Dickey, J.O. Rosen, R.D. and Salstein, D.A., 1988: Causes of rapid motions of the Earth’s pole. Nature, 334, 115119, 1988.CrossRefGoogle Scholar
Eubanks, T.M., Dickey, J.O., and Steppe, J. A, The 1982-83 El Niño, the Southern Oscillation, and Changes in the Length of Day, Trop. Ocean and Atmos. Newsletter, 29, 2123, 1985a. Google Scholar
Eubanks, T.M., Steppe, J.A. Dickey, J.O., and Callahan, P.S., A Spectral Analysis of the Earth’s Angular Momentum Budget, J. Geophys. Res., 90, B7, 53855404, 1985b.CrossRefGoogle Scholar
Eubanks, T.M., Steppe, J.A., and Dickey, J.O., The El Niño, the Southern Oscillation and the Earth’s Rotation, in Earth Rotation; Solved and Unsolved Problems, NATO Advanced Institute Series C: Mathematical and Physical Sciences, 187, ed. Cazenave, A., 163186, D. Reidel, Norwell, Mass., 1986.CrossRefGoogle Scholar
Feissel, M., Determination of the Earth Rotation Parameters by the BIH 1962-1979, Bull. Geod., 54, 81102, 1980.CrossRefGoogle Scholar
Feissel, M. and Gambis, D., La Mise en Evidence de Variations Rapides de la Durée du Jour, C. R. Acad. Sci. Paris, Series B., 291, 271273, 1980.Google Scholar
Feissel, M. and Nitschelm, C., Time Dependent Aspects of the Atmospheric Driven Fluctuations in the Duration of the Day, Ann. Geophys., 3, 180186, 1985.Google Scholar
Feissel, M., Bourquard, D. Chariot, P., Eisop, E., Essaifi, N., Gambis, D., Lestrade, J.-F.,Arias, E.F., Boucher, C., Altamimi, Z., Earth Orientation and Related Reference Frames, Space Geodesy and Geodynamics, Geophysical Monograph Series of the American Geophysical Union, Washington, D.C, Turcotte, D.L. (ed.), 99112, 1993.CrossRefGoogle Scholar
Freedman, A.P., Steppe, J.A., Dickey, J.O., Eubanks, T.M., and Sung, L.Y., The Short-Term Prediction of Universal Time and Length of Day Using Atmospheric Angular Momentum, J. Geophys. Res., 99, 6981-1996, 1994a.CrossRefGoogle Scholar
Freedman, A.P., Ibañez-Meier, R., Herring, T.A., Lichten, S.M., and Dickey, J.O., Subdaily Earth Rotation During the Epoch ‘92 Campaign, Geophys. Res. Lett., 21, 769772, 1994b.CrossRefGoogle Scholar
Fricke, W., Arguments in Favor of a Change in Precession, Astron. Astrophys., 54, 363366, 1977.Google Scholar
Fricke, W., Definition and Practical Realization of the Reference Frame in the FK5—the Role of Planetary Dynamics and Stellar Kinematics in the Definition, in Reference Coordinate Systems for Earth Dynamics, Gaposchkin, F.M. and Kolaczek, B. (eds.), D. Reidel, 331340, 1981.CrossRefGoogle Scholar
Ghil, M., Dynamics, Statistics and Predictability of Planetary Flow Regimes, In Irreversible Phenomena and Dynamical Systems Analysis in Geosciences, C. and Nicolis, G. (eds.), Reidel, Dordrecht/Boston, 241283, 1987.Google Scholar
Ghil, M., and Childress, S., Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics, Springer-Verlag, NewYork/Berlin, 485, 1987.CrossRefGoogle Scholar
Gill, A.E., Atmosphere Ocean Dynamics, Academic, New York, 1982.Google Scholar
Gross, R.S., The Influence of Earthquakes on the Chandler Wobble During 1973-1983, Geophys. J. R. Astr. Soc, 85, 161177, 1986.CrossRefGoogle Scholar
Gross, R.S., The Secular Drift of the Rotation Pole, Earth Rotation and Coordinate Reference Frames,Boucher, C. and Wilkins, G.A. (eds.), Springer-Verlag, New York, 146153, 1990.CrossRefGoogle Scholar
Gross, R.S., The Effect of Ocean Tides on the Earth’s Rotation as Predicted by the Results of an Ocean Tide Model, Geophys. Res. Lett., 20, 293296, 1993.CrossRefGoogle Scholar
Gross, R.S., A Combination of Earth Orientation Data: SPACE93, in IERS Technical Note 17: Earth Orientation, Reference Frame and Atmospheric Excitation Functions,Chariot, P. (ed), Observatoire de Paris, Paris, France, C5C12, 1994.Google Scholar
Gross, R.S., and Lindqwister, U.J., Atmospheric Excitation of Polar Motion during the GIG’91 Measurement Campaign, Geophys. Res. Lett., 19, 849852, 1992.CrossRefGoogle Scholar
Guinot, B., Rotation of the Earth and Polar Motion Services In Proc. GEOP Conf. Int. Symp. Appl Geod. Geodyn. 9th, pp. 1318, Dept. of Geodetic Science, Rep. No. 280, Ohio State Univ., 1978.Google Scholar
Gwinn, C.R., Herring, T.A., and Shapiro, I.I., Geodesy by Radio Interferometry: Studies of the Forced Nutations of the Earth 2 Interpretation, J. Geophys. Res., 91, 47554765, 1986.CrossRefGoogle Scholar
Herring, T.A., and Dong, D., Current and Future Accuracy of Earth Orientation Measurements, Proceedings of the AGU Chapman Conference on Geodetic VLBI: Monitoring Global Change (NOAA Technical Report NOS 137 NGS 49), 306324, 1991.Google Scholar
Herring, T.A., and Dong, D., Measurement of Diurnal and Semidiurnal Rotation Variations and Tidal Parameters of the Earth, J. Geophys. Res., 99, 18,05118,071, 1994.CrossRefGoogle Scholar
Herring, T.A., Gwinn, C.R., and Shapiro, I.I., Geodesy by Radio Interferometry: Studies of the Forced Nutations of the Earth 1. Data Analysis, J. Geophys. Res., 91, 47454754, 1986.CrossRefGoogle Scholar
Herring, T.A., Buffett, B.A.,Mathews, P.M., and Shapiro, I.I., Forced Motions of the Earth: Influence of Inner Core Dynamics: 3. Very Long Baseline Interferometry Data Analysis, J. Geophys. Res., 96, 82598273, 1991.CrossRefGoogle Scholar
Hide, R., Interaction Between the Earth’s Liquid Core and Solid Mantle, Nature, 222, 10551056, 1969.CrossRefGoogle Scholar
Hide, R., Towards a Theory of Irregular Variations in the Length of the Day and Core-Mantle Coupling, Phil. Trans. Roy. Soc., A284, 547554, 1977. Google Scholar
Hide, R. Fluctuations in the Earth’s Rotation and the Topography of the Core-Mantle Interface, Phil. Trans. Roy. Soc, A328, 351363, 1989. Google Scholar
Hide, R., and Dickey, J.O., Earth’s Variable Rotation, Science, 253, 629, 1991.CrossRefGoogle ScholarPubMed
Hide, R., Birch, N.T., Morrison, L.V.,Shea, D.J., and White, A.A., Atmospheric Angular Momentum Fluctuations and Changes in the Length of the Day, Nature, 286, 114117, 1980.CrossRefGoogle Scholar
Hide, R., Clayton, R.W.,Hager, B.H.,Spieth, M.A., and Voorhies, C.V., Topographic Core-Mantle Coupling and Fluctuations in the Earth’s Rotation, Geophysical Monograph Series of the American Geophysical Union, Washington D. C, Aki, K.-I.ed), 107120, 1993.Google Scholar
Horel, J.D., and Wallace, J.M., Planetary-Scale Atmospheric Phenomena Associated with the Southern Oscillation, Mon. Weather Rev., 109, 813828, 1981.2.0.CO;2>CrossRefGoogle Scholar
Jackson, A., Bloxham, J., and Gubbins, D., Time-Dependent Flow at the Core Surface and Conservation of Angular Momentum in the Coupled Core-Mantle System, Dynamics of Earth’s Deep Interior and Earth Rotation, Geophysical Monograph 72, IUGG Volume 12, American Geophysical Union, 1993.Google Scholar
Jault, D., and Le Mouël, J-L., The Topographic Torque Associated with a Tangentially Geostrophic Motion at the Core Surface and Inferences on the Flow Inside the Core, Geophys. Astrophys. Fluid. Dynam., 48, 273296, 1989.CrossRefGoogle Scholar
Jault, D., and Le Mouël, J-L., Exchange of Angular Momentum Between the Core and Mantle, J. Geomag. Geoelect., 43, 111129, 1991.CrossRefGoogle Scholar
Jordi, C., Morrison, L.V., Rosen, R.D., Salstein, D.A., and Rossello, G., Fluctuations in the Earth’s Rotation Since 1830 from High Resolution Astronomical Data, Geophys. J. Intern., 117, 811818, 1994.CrossRefGoogle Scholar
Keppenne, C.L., and Ghil, M., Adaptive Spectral Analysis of the Southern Oscillation Index, in Proceedings of the XVth Annual Climate Diagnostics Workshop, 3035, U.S. Department of Commerce, NOAA, 1991.Google Scholar
Kinoshita, H., Theory of the Rotation of the Rigid Earth, Celest. Mech., 15, 277326, 1977.CrossRefGoogle Scholar
Krishnamurti, T.N. and Subrahmanyam, D., The 30-50 Day Mode at 850 mb During MONEX, J. Atmos. Sci., 39, 20882095, 1982.2.0.CO;2>CrossRefGoogle Scholar
Kuehne, J.W., and Wilson, C.R., Terrestrial Water Storage and Polar Motion, J. Geophys. Res., 96, B3, 43374345, 1991.CrossRefGoogle Scholar
Lambeck, K., The Earth’s Variable Rotation, Cambridge Univ. Press, London and New York, 1980a.CrossRefGoogle Scholar
Lambeck, K., Changes in Length of Day and Atmospheric Circulation, Nature, 26, 104, 1980b.CrossRefGoogle Scholar
Lambeck, K., Geophysical Geodesy, The Slow Deformation of the Earth, Clarendon Press, Oxford, 1988.Google Scholar
Lambeck, K., and Cazenave, A., Philos. Trans. R. Soc. London A 284, 495506, 1977.Google Scholar
Langley, R.B., King, R.W., Shapiro, I.I., Rosen, R.D., and Salstein, D.A., Atmospheric Angular Momentum and the Length of the Day: A Common Fluctuation with a Period Near 50 Days, Nature, 294, 730733, 1981.CrossRefGoogle Scholar
Madden, R.A., Seasonal Variations of the 40-50 Day Oscillation in the Extratropics,J. Atmos. Sci., 43, 31383158, 1986.2.0.CO;2>CrossRefGoogle Scholar
Madden, R.A., Relationships Between Changes in the Length of Day and the 40- to 50-Day Oscillation in the Tropics, J. Geophys. Res., 92, 83918399, 1987.CrossRefGoogle Scholar
Madden, R.A. and Julian, P.R., Detection of a 40-50 Day Oscillation in the Zonal Wind in the Tropical Pacific, J. Atmos. Sci., 28, 702708, 1971.2.0.CO;2>CrossRefGoogle Scholar
Madden, R.A. and Julian, P.R., Description of Global-Scale Circulation Cells in the Tropics with a 40-50 Day Period, J. Atmos. Sci., 29, 11091123, 1972.2.0.CO;2>CrossRefGoogle Scholar
Marcus, S.L., Intraseasonal Oscillations in the Earth-Atmosphere System, Ph.D. Thesis, University of California at Los Angeles, 1990.Google Scholar
Marcus, S.L., and Dickey, J.O., Coupled Poleward Propagation of Sea Surface Temperature and Atmospheric Angular Momentum Anomalies: Results from AMIP, Sixth Conference on Climate Variations, American Meteorological Society, 7074, 1994.Google Scholar
Marcus, S.L., Ghil, M., Dickey, J.O., and Eubanks, T.M., Origin of the 30-60 Day Oscillation in the Length of Day and Atmospheric Angular Momentum: New Findings from the UCLA General Circulation Model, in The Earth’s Rotation and Reference Frames for Geodesy and Geodynamics, Wilkins, G.A. (ed.), Springer-Verlag, NewYork, 98105, 1990.Google Scholar
Marsh, J.G., et al., GEM-T2 Gravitation Model, J. Geophys. Res., 95, 22,04322,047, 1990.CrossRefGoogle Scholar
Mathews, P.M., and Shapiro, I.I., Nutations of the Earth, Annu. Rev. Earth Planet. Sci.,20, 469500, 1992.CrossRefGoogle Scholar
Mathews, P.M., Buffet, B.A., Herring, T.A., and Shapiro, I.I., Forced Nutations of the Earth: Influence of Inner Core Dynamics 2. Numerical Results and Comparisons, J. Geophys. Res., 96, 8243-57, 1991.CrossRefGoogle Scholar
McCarthy, D. D., and Babcock, A.K., The Length of Day Since 1656, Phys. Earth and Planet. Inter., 44, 281292, 1986.CrossRefGoogle Scholar
Merriam, J.B., Meteorological Excitation of the Annual Polar Motion, Geophys. J. R. Astron. Soc., 70, 4156, 1982.CrossRefGoogle Scholar
Miller, A.J., Periodic Variation of Atmospheric Circulation at 14-16 Days, J. Atmos. Sci., 31, 720726, 1974.Google Scholar
Morgan, P.J., King, R.W., and Shapiro, I.I., Length of Day and Atmospheric Angular Momentum: A Comparison for 1981-1983, J. Geophys. Res., 90, 1264512652, 1985.CrossRefGoogle Scholar
Moritz, H., and Mueller, I.I., Earth Rotation: Theory and Observation, The Ungar Publishing Co., New York, 1987.Google Scholar
Munk, W.H., and MacDonald, G.J.F., The Rotation of the Earth, Cambridge University Press, 1960.Google Scholar
Murakami, M., Large-scale Aspects of Deep Convective Activity Over the GATE Area, Mon. Weather Rev., 107, 9941013, 1979.2.0.CO;2>CrossRefGoogle Scholar
Nakiboglu, S.M. & Lambeck, K., Geophys. J. R. Astr. Soc., 62, 4958, 1980.CrossRefGoogle Scholar
Neuberg, J., Hinderer, J., and Zurn, W., Stacking Gravity-Tied Observations in Central Europe for the Retrieval of the Complex Eigenfrequency of the Nearly Diurnal Free-Wobble, Geophys. J. R. Ast. Soc., 91, 853868, 1987.CrossRefGoogle Scholar
Paulus, J., and Stix, M., Electromagnetic Core-Mantle Coupling, Earth Rotation: Solved and Unsolved Problems, Cazenave, A., ed., D. Reidel Publishing Co., Dordrecht, 259267, 1986.CrossRefGoogle Scholar
Philander, S.G.H., El Niño Southern Oscillation Phenomena, Nature, 302, 295301, 1983.CrossRefGoogle Scholar
Philander, S.G.H., El Niño, La Niña, and the Southern Oscillation, Academic Press, NewYork, 1990.Google Scholar
Ponte, R.M., Barotropic Motions and the Exchange of Angular Momentum Between the Oceans and Solid Earth, J. Geophys. Res., 95, 11,36911,374, 1990.CrossRefGoogle Scholar
Ponte, R.M. and Rosen, R.D., Oceanic Angular Momentum and Torques in a General-Circulation Model, J. Phys. Ocean., 24, 19661977, 1994.2.0.CO;2>CrossRefGoogle Scholar
Rasmusson, E.U., and Wallace, J.M., Meteorological Aspects of the El Niño/Southern Oscillation, science, 222, 11951202, 1983.CrossRefGoogle ScholarPubMed
Rasmusson, E.M., Wang, X., and Ropelewski, C.F., The Biennial Component of ENSO Variability, J. Mar. Systems, 1, 7196, 1990.CrossRefGoogle Scholar
Rochester, M.G., Causes of Fluctuations in the Earth’s Rotation, Philos. Trans. R. Soc. London A, 313, 95105, 1984.Google Scholar
Rosen, R.D., The Axial Momentum Balance of Earth and Its Fluid Envelope, Surveys Geophys., 14, 129, 1993.CrossRefGoogle Scholar
Rosen, R.D., and Salstein, D.A., Variations in Atmospheric Angular Momentum on Global and Regional Scales and the Length of Day, J. Geophys. Res., 88, C9, 54515470, 1983.CrossRefGoogle Scholar
Rosen, R.D., and Salstein, D.A., Contribution of Stratospheric Winds to Annual and Semi-Annual Fluctuations in Atmospheric Angular Momentum and the Length of Day, J. Geophys. Res., 90, 80338041, 1985.CrossRefGoogle Scholar
Rosen, R.D., and D.A., Salstein, Comment on “A Seasonal Budget of Earth’s Axial Angular Momentum” by Naito, and Kikucho, , Geophys. Res. Lett, 18, 19251926, 1991.CrossRefGoogle Scholar
Rosen, R.D., Salstein, D.A.,Eubanks, T.M.,Dickey, J.O., and Steppe, J.A., An El Niño Signal in Atmospheric Angular Momentum and Earth Rotation, Science, 225, 411414, 1984.CrossRefGoogle ScholarPubMed
Rosen, R.D., Arpe, K., Miller, A.J., and Salstein, D.A., Accuracy of Atmospheric Angular Momentum Estimates from Operational Analyses, Monthly Weather Rev., 115, 16271639, 1987.2.0.CO;2>CrossRefGoogle Scholar
Rosen, R.D., Salstein, D.A., Wood, T.M., Discrepancies in the Earth-Atmosphere Angular Momentum Budget, Journal of Geophysical Research, 95, 265279, 1990.CrossRefGoogle Scholar
Salstein, D.A., Monitoring Atmospheric Winds and Pressures for Earth Orientation Studies, Adv. Space R., 13, 175184, 1993.CrossRefGoogle Scholar
Salstein, D.A., and Rosen, R.D., Earth Rotation as a Proxy for Interannual Variability in Atmospheric Circulation, 1860-Present, J. Clim. and Appi. Meteorol., 25, 18701877, 1986.2.0.CO;2>CrossRefGoogle Scholar
Salstein, D.A., and R.D., Rosen, Topographic Forcing of the Atmosphere and a Rapid Change in the Length of Day, Science, 264, 407409, 1994.CrossRefGoogle Scholar
Salstein, D.A., Kann, D.M., Miller, A.J., and Rosen, R.D., The Sub-Bureau for Atmospheric Angular Momentum of the International Earth Rotation Service: A Meteorological Data Center with Geodetic Applications, Bull. Am. Meteorol. Soc., 74, 6780, 1993.2.0.CO;2>CrossRefGoogle Scholar
Schwiderski, E., Atlas of Ocean Tidal Charts and Maps, Part I: The Semidiurnal Principal Lunar Tide M2, Mar. Geod., 6, 219256, 1983.CrossRefGoogle Scholar
Seidelmann, P.K., 1980 IAU Nutation: The Final Report of the IAU Working Group on Nutation, Celest. Mech., 27, 79106, 1982.CrossRefGoogle Scholar
Seiler, U., Periodic Changes of the Angular Momentum Budget Due to the Tides of the World Ocean, J. Geophys. Res., 96, 1028710300, 1991.CrossRefGoogle Scholar
Simmons, A.J., Wallace, J.M., and Branstator, G.W., Barotropic Wave Propagation and Instability and Atmospheric Teleconnection Patterns, 40, 13631392, 1983.Google Scholar
Smith, M.L., and Dahlen, F.A., The Period and Q of the Chandler Wobble, Geophys. J. R. Astron. Soc., 64, 223281, 1981 CrossRefGoogle Scholar
Sovers, O.J., Jacobs, C.S., and Gross, R. S, Measuring Rapid Ocean Tidal Earth Orientation Variations with VLBI, J. Geophys. Res., 98, 19,95919,971, 1993.CrossRefGoogle Scholar
Stephanick, M., Interannual Atmospheric Angular Momentum Variability 1963-1973 and the Southern Oscillation, J. Geophys. Res., 87, 428432, 1982.CrossRefGoogle Scholar
Stephenson, F.R., and Morrison, L.V., Long-Term Changes in the Rotation of the Earth:700 B.C. to A.D. 1980, Phil. Trans. R. Soc. London, A313, 4770, 1984.Google Scholar
Stephenson, F.R., and Morrison, L.V., Long-Term Fluctuation in the Earth’s Rotation:700 B.C. to A.D. 1990, Phil. Trans. R. Soc. London, Series A, in press, 1995.Google Scholar
Wahr, J.M., The Forced Nutations of an Elliptical, Rotating, Elastic, and Oceanless Earth, Geophys. J. Roy. Astron. Soc, 64, 705727, 1981.CrossRefGoogle Scholar
Wahr, J.M., Friction and Mountain Torque Estimates from Global Atmospheric Data, J. Atmos. Sci., 41, 190, 1984.2.0.CO;2>CrossRefGoogle Scholar
Wahr, J.M., The Earth’s Rotation, Ann. Rev. Earth Planet Sci., 16, 231249, 1988.CrossRefGoogle Scholar
Wahr, J., Dazhong, H., Trupin, A. and Lindquist, J., Secular Changes in Rotation and Gravity: Evidence of Post-Glacial Rebound or of Changes in Polar Ice?, Adv. Space Res., 13, 128136, 1993.CrossRefGoogle Scholar
Watkins, M., M., Eanes, R.J., Diurnal and Semidiurnal Variations in Earth Orientation Determined from LAGEOS Laser Ranging, J. Geophys. Res., 99, 9, 18,07318,079, 1994.CrossRefGoogle Scholar
Williams, J.G., Newhall, X X, Dickey, J.O., Luni-solar Precession: Determination from Lunar Laser Ranging, Astron. Astrophys. Lett., 241, L9L12, 1991.Google Scholar
Wilson, C.R., Contribution of Water Mass Redistribution to Polar Motion Excitation in Contributions of Space Geodesy to Geodynamics: Earth Dynamics, Geodynamics Series vol. 24, eds. Smith, D.E. and Turcotte, D.L., American Geophysical Union, D.C., 7782, 1993.CrossRefGoogle Scholar
Wilson, C.R., and Vincente, R.O., An Analysis of the Homogeneous ILS Polar Motion Series, Geophys. J.R.Astron.Soc., 62, 605616, 1980.CrossRefGoogle Scholar
Wolf, W.L., and Smith, R.B., Length-of-Day Changes and Mountain Torque During El Niño, J. Atmos. Sci., 44, 36563660, 1987.2.0.CO;2>CrossRefGoogle Scholar
Wyrtki, K., The Slope of Sea Level Along the Equator During the 1982/1983 El Niño, J. Geophys. Res., 89, 10,41910,424, 1984.CrossRefGoogle Scholar
Wu, P., and Peltier, W., Pleistocene Deglaciation and the Earth’s Rotation: A New Analysis, Geophys. J. R. Astr. Soc., 76, 753791, 1984.CrossRefGoogle Scholar
Wünsch, J, and Seiler, U., Theoretical Amplitudes and Phases of the Periodic Polar Motion Terms Caused by Ocean Tides, Astron. Astrophys., 266, 581587, 1992.Google Scholar
Wyrtki, K., Water Displacements in the Pacific and the Genesis of El Niño Cycles, J. Geophys. Res., 90, 71297132, 1985.CrossRefGoogle Scholar
Xu, J.S., On the Relationship Between the Stratospheric Quasi-Biennial Oscillation and the Tropospheric Southern Oscillation, J. Atmos. Sci., 49, 725734, 1992.2.0.CO;2>CrossRefGoogle Scholar
Yasunari, T., Structure of an Indian Summer Monsoon System With Around 40-day Period, J.Meteor. Soc. Japan, 59, 336354, 1981.CrossRefGoogle Scholar
Yoder, C.F., Parke, M.W., and Williams, J.G., Tidal Variations of the Earth’s Rotation, J. Geophys. Res., 86, B2, 881891,1981.CrossRefGoogle Scholar
Yoder, C.F., Williams, J.G., Dickey, J.O., Schutz, B.E., Eanes, R.J., and Tapley, B.D., Secular Variation of Earth’s Gravitational Harmonic J2 Coefficient from Lageos andNontidal Acceleration of Earth Rotation, Nature, 303, 757762, 1983.CrossRefGoogle Scholar
Yumi, S. and Yokoyama, K., Results of the International Latitude Service in a Homogeneous System 1899.9-1979.0, Publications, Central Bureau of the International Polar Motion Service, Mizusawa, 1980.Google Scholar
Zheng, D., Chin. Astron. Astrophys. 3, 114, 1979.Google Scholar