Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T00:33:14.611Z Has data issue: false hasContentIssue false

Cometary Silicates: Interstellar and Nebular Materials

Published online by Cambridge University Press:  30 March 2016

Diane H. Wooden*
Affiliation:
NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035-1000, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evidence for interstellar material in comets is deduced from IR spectra, in situ measurements of Comet Halley, and chondritic porous interplanetary dust particles (CP IDPs). IR spectra of comets reveal the spectrally active minerals: amorphous carbon, amorphous silicates, and (in some comets) crystalline silicates. Evidence suggests amorphous silicates are of interstellar origin while crystalline silicates are of nebular origin.

10 μm spectra of comets and sub-micron amorphous silicate spherules in CP IDPs have shapes similar to absorption spectra through lines-of-sight in the ISM. Thermal emission models of cometary IR spectra require Fe-bearing amorphous silicates. Fe-bearing amorphous silicates may be Fe-bearing crystalline silicates formed in AGB outflows that are amorphized through He+ ion bombardment in supernova shocks in the ISM.

Crystalline silicates in comets, as revealed by IR spectra, and their apparent absence in the ISM, argues for their nebular origin. The high temperatures (>1000 K) at which crystals form or are annealed occur in the inner nebula or in nebular shocks in the 5 – 10 AU region. Oxygen isotope studies of CP IDPs show only 1% by mass of the silicate crystals are of AGB origin. Together this suggests crystalline silicates in comets are probably primitive grains from the early solar nebula.

Type
I. Joint Discussions
Copyright
Copyright © Astronomical Society of Pacific 2005

References

Bockelée-Morvan, D., Gautier, D., Hersant, F., Huré, J.-M., Robert, F. 2002, A&A, 384, 1107 Google Scholar
Bradley, J. P. 1994, Science, 265, 925 Google Scholar
Bradley, J. P., Keller, L. P., Gezo, J., Snow, T., Flynn, G. J., Brownlee, D. E., & Bowey, J. 1999a, Lunar Planet. Sci., 30, Abs. No. 1835 The 10 and 18 Micrometer Silicate Features of GEMS: Comparison with Astronomical SilicatesGoogle Scholar
Bradley, J. P., Keller, L. P., Snow, T. P., et al, Hanner, M. S., Flynn, G. J., Gezo, J. C., Clemett, S. J., Brownlee, D. E., & Bowey, J. E. 1999a, Science, 285, 1716 An infrared spectral match between GEMS and interstellar grainsGoogle Scholar
Bradley, J. P., Snow, T. P., Brownlee, D. E., & Hanner, M. S. 1999b in Solid Interstellar Matter: The ISO Revolution, Les Houches Workshop, ed. d’Hendecourt, L., Joblin, C., & Jones, A. (EDP Sciences and Springer-Verlag), 297 Google Scholar
Carrez, P., Demyk, K., Cordier, P., Gengembre, L., Grimblot, J., d’Hendecourt, L., Jones, A. P., & Lerouz, H. 2002, Meteorit. Planet Sci., 37, 1599 Google Scholar
Fabian, D., Jäger, C., Henning, Th., Dorschner, J., & Mutschke, H. 2000, A&A, 364, 282 Google Scholar
Grossman, L. 1972, Geochim. Cosmochim. Acta, 38, 47 Google Scholar
Harker, D. E., & Desch, S. 2002, ApJ, 565, L109 Google Scholar
Harker, D. E., Wooden, D. H., Woodward, C. E., & Lisse, C. M. 2002, ApJ, 580, 579 Google Scholar
Kemper, F., Vriend, W. J., & Tielens, A. G. G. M. 2004, ApJ, 609, 826 CrossRefGoogle Scholar
Li, A., & Greenberg, J. M. 1997, A&A, 323, 566 Google Scholar
Li, A., & Draine, B. T. 2002, ApJ, 564, 803 Google Scholar
Wooden, D. H. 2002, Earth Moon Planets, 89, 247 Google Scholar