Article contents
Abundance Ratios in Metal-Poor Globular Clusters: Deep Mixing and its Effect on Stellar Populations of the Galactic Halo
Published online by Cambridge University Press: 14 August 2015
Extract
Only a bit more than 25 years ago, it seemed possible to assume that all Galactic globular clusters were chemically homogeneous. There were indications that star-to-star Fe abundance variations existed in ω Cen, but this massive cluster appeared to be unique. Following Osborn’s (1971) initial discovery, Zinn’s (1973) observation that M92 asymptotic giant branch (AGB) stars had weaker G-bands than subgiants with equivalent temperatures provided the first extensive evidence that there might be variations in the abundances of the light elements in an otherwise “normal” cluster. Since then star-to-star variations in the abundances of C, N, O, Na, Mg and Al have been observed in all cases in which sample sizes have exceeded 5-10 stars, e.g., in clusters such as M92, M15, M13, M3, ω Cen, MIO and M5. Among giants in these clusters one finds large surface O abundance differences, and these are intimately related to differences of other light element abundances, not only of C and N, but also of Na, Mg and Al (cf. reviews by Suntzeff 1993, Briley et al 1994, and Kraft 1994). The abundances of Na and O, as well as Al and Mg, are anticorrelated. Prime examples are found among giants in M15 (Sneden et al 1997), M13 (Pilachowski et al 1996; Shetrone 1996a,b; and Kraft et al 1997) and ω Cen (Norris & Da Costa 1995a,b).
These observed anticorrelations almost certainly result from proton- capture chains that convert C to N, 0 to N, Ne to Na and Mg to Al in or near the hydrogen fusion layers of evolved cluster stars. But which stars? An appealing idea is that during the giant branch lifetimes of the low-mass stars that we now observe, substantial portions of the stellar envelopes have been cycled through regions near the H-burning shell where proton-capture nucleosynthesis can occur. This so-called “evolutionary” scenario involving deep envelope mixing in first ascent red giant branch (RGB) stars has been studied by Denissenkov & Denissenkova (1990), Langer & Hoffman (1995), Cavallo et al (1996, 1997) and Langer et al (1997). The mixing mechanism that brings proton-capture products to the surface is poorly understood (Denissenkov & Weiss 1996, Denissenkov et al 1997, Langer et al 1997), but deep mixing driven by angular momentum has been suggested (Sweigart & Mengel 1979, Kraft 1994, Langer & Hoffman 1995, Sweigart 1997).
- Type
- II. Joint Discussions
- Information
- Copyright
- Copyright © Kluwer 1998
References
- 2
- Cited by