No CrossRef data available.
Article contents
WEIGHTED COMPOSITION OPERATORS ON H∞ ∩
$\mathcal{B}$o
Published online by Cambridge University Press: 17 December 2014
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We will characterize the boundedness and compactness of weighted composition operators on the closed subalgebra H∞ ∩ $\mathcal{B}$o between the disk algebra and the space of bounded analytic functions on the open unit disk.
MSC classification
Secondary:
30H10: Hardy spaces
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2014
References
REFERENCES
1.Aleksandrov, A. B., Anderson, J. M. and Nicolau, A., Inner functions, Bloch spaces and symmetric measures, Proc. London Math. Soc. 79 (3) (1999), 318–352.CrossRefGoogle Scholar
2.Contreras, M. D. and Díaz-Madrigal, S., Compact-type operators defined on H ∞, Contemp. Math. 232 (1999), 111–118.CrossRefGoogle Scholar
3.Cowen, C. C. and MacCluer, B. D., Composition operators on spaces of analytic functions (CRC Press, Boca Raton, FL, 1995).Google Scholar
4.Garnett, J. B., Bounded analytic functions (Academic Press, 1981; Revised First Edition, Springer, New York, 2007).Google Scholar
5.Izuchi, K. J., Izuchi, K. H. and Izuchi, Y., Sums of weighted composition operators on COP, Glasgow Math. J. 55 (2013), 229–239.CrossRefGoogle Scholar
6.Madigan, K. and Matheson, A., Compact composition operators on the Bloch space, Trans. Am. Math. Soc. 347 (1995), 2679–2687.Google Scholar
7.Ohno, S. and Zhao, R., Weighted composition operators on the Bloch space Bull. Aust. Math. Soc. 63 (2001), 177–185.Google Scholar
8.Sarason, D., Function theory on the unit circle, (Virginia Poly. Inst. and State Univ., Blackburg, Virginia, 1999).Google Scholar
9.Shapiro, J. H., Composition operators and classical function theory (Springer-Verlag, New York, 1993).Google Scholar
10.Smith, W., Inner functions in the hyperbolic little Bloch class Michigan Math. J. 45 (1998), 103–114.Google Scholar
11.Zhu, K., Operator theory on function spaces (Marcel Dekker, New York, 1990; Second Edition, Amer. Math. Soc., Providence, 2007).Google Scholar