No CrossRef data available.
Article contents
Weakly stable Banach spaces and the Banach-Saks properties
Published online by Cambridge University Press: 18 May 2009
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In [9] J. L. Krivine and B. Maurey introduced the class of stable Banach spaces: a separable Banach space is called stable if for every pair of bounded sequences (xn)n, (yn)n and for every pair of ultrafilters on the natural numbers we have
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1993
References
REFERENCES
1.Aldous, D. J., Unconditional bases and martingales in LP(F), Math. Proc. Camb. Phil. Soc. 85 (1979), 117–123.CrossRefGoogle Scholar
2.Argyros, S., Negrepontis, S. and Zachariades, Th., Weakly stable Banach spaces, Israel J. Math. 57 (1987), 68–88.CrossRefGoogle Scholar
3.Beauzamy, B., Banach-Saks properties and spreading models, Math. Scand. 44 (1979), 357–384.CrossRefGoogle Scholar
4.Beauzamy, B. and Lapreste, J. T., Modeles étales des espaces de Banach (Herman, Ed.,Paris, 1984).Google Scholar
5.Bessaga, C. and Pelczyňski, A., Spaces of continuous functions (IV), Studia Math. 19 (1960), 53–62.CrossRefGoogle Scholar
6.Farnum, N. R., The Banach-Saks theorem in C(S), Canadian J. Math, 26 (1974), 91–97.CrossRefGoogle Scholar
7.Garling, D. J. H., Stable Banach spaces, random measures and Orlicz function spaces, in Probability measures on groups, Lecture Notes in Mathematics No. 928 (Springer-Verlag, 1982), 121–175.CrossRefGoogle Scholar
8.Guerre, S. and Lapreste, J. T., Quelques proprietes des espaces de Banach stables, Israel J. Math. 39 (1981), 247–254.CrossRefGoogle Scholar
9.Krivine, J. L. and Maurey, B., Espaces de Banach stables, Israel J. Math. 39 (1981), 273–295.CrossRefGoogle Scholar
10.Namioka, I., Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515–523.CrossRefGoogle Scholar
11.Rosenthal, H. P., Weakly independent sequences and the Banach-Saks property, in Proceedings of the Durham Symposium on the relations between infinite dimensional and finite dimensional convexity, Durham-July 1975, p. 26.Google Scholar
You have
Access