Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-16T15:05:50.615Z Has data issue: false hasContentIssue false

(WEAK) INCIDENCE BIALGEBRAS OF MONOIDAL CATEGORIES

Published online by Cambridge University Press:  16 March 2020

ULRICH KRÄHMER
Affiliation:
Institut für Geometrie, Technische Universität Dresden, Dresden, Germany e-mails: [email protected]; [email protected]
LUCIA ROTHERAY
Affiliation:
Institut für Geometrie, Technische Universität Dresden, Dresden, Germany e-mails: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Incidence coalgebras of categories in the sense of Joni and Rota are studied, specifically cases where a monoidal product on the category turns these into (weak) bialgebras. The overlap with the theory of combinatorial Hopf algebras and that of Hopf quivers is discussed, and examples including trees, skew shapes, Milner’s bigraphs and crossed modules are considered.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

References

REFERENCES

Baez, J. C. and Lauda, A. D., Higher-dimensional algebra V: 2-groups, Theory Appl. Categor. 12 (2004), 423491.Google Scholar
Bergbauer, C. and Kreimer, D., Hopf algebras in renormalisation theory: locality and Dyson-Schwinger equations from Hochschild cohomology, IRMA Lect. Math. Theor. Phys. 10 (2006), 133164.Google Scholar
Böhm, G., Nill, F. and Szlachányi, K., Weak Hopf algebras I. Integral theory and C*-structure, arXiv:math/9805116.Google Scholar
Brown, R. and Spencer, C. B., G-groupoids, crossed modules, and the classifying space of a topological group, Proc. Kon. Akad. v. Wet. 79 (1976), 296302.Google Scholar
Cibils, C., Lauve, A. and Witherspoon, S., Hopf quivers and Nichols algebras in positive characteristic (2009).CrossRefGoogle Scholar
Cibils, C. and Rosso, M., Hopf quivers (2000), arXiv:math/0009106.Google Scholar
Connes, A. and Kreimer, D., Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys. 199 (1998), 203242.CrossRefGoogle Scholar
Crossley, M. D., Some Hopf algebras of words, Glasgow Math. J. 48 (2006), 575582.CrossRefGoogle Scholar
Foissy, L., An introduction to Hopf algebras of trees, preprint.Google Scholar
Forrester-Barker, M., Group objects and internal categories (2002), arXiv:math/0212065v1.Google Scholar
Gàlvez-Carillo, I., Kock, J. and Tonks, A., Decomposition spaces in combinatorics (2016), arXiv:1612.09225v2.Google Scholar
Gàlvez-Carillo, I., Kock, J. and Tonks, A., Decomposition Spaces, incidence algebras and Möbius inversion III: the decomposition space of Möbius intervals (2015), arXiv:1512.07580.Google Scholar
Green, E. L. and Solberg, Ø., Basic Hopf algebras and quantum groups, Mathematische Zeitschrift 229(1) (1998), 4576.CrossRefGoogle Scholar
Grinberg, D. and Reiner, V., Hopf algebras in combinatorics (2014), arXiv:1409.8356.Google Scholar
Holtkamp, R., On Hopf algebra structures over free operads, Adv. Math. 207(2) (2006), 544565.CrossRefGoogle Scholar
Huang, H.-L. and Torrecillas, B., Quiver bialgebras and monoidal categories, Colloq. Math. 131 (2013), 287300.CrossRefGoogle Scholar
Jensen, O. H. and Milner, R., Bigraphs and mobile processes (revised), Technical Report (University of Cambridge computer laboratory, 2004).Google Scholar
Joni, S. A. and Rota, G.-C., Coalgebras and bialgebras in combinatorics, Stud. Appl. Math. 61 (1979), 93139.CrossRefGoogle Scholar
Kaufmann, R. M. and Ward, B. C., Feyman categories, arXiv:1312.1269v3.Google Scholar
Kock, J., Polynomial functors and combinatorial Dyson-Schwinger equations, J. Math. Phys. 58 (2017), 041703.CrossRefGoogle Scholar
Lawvere, F. W. and Menni, M., The Hopf algebra of Möbius intervals, Theory Appl. Categor. 24(10) (2010), 221265.Google Scholar
Leroux, P., Les Categories de Möbius, Cahiers de Topologie et Gèometrie Diffèrentielle Catègoriques 16(3) (1975) 280282.Google Scholar
Leinster, T., Notions of Möbius inversion, Bull. Belg. Math. Soc. Simon Stevin 19(5) (2012), 911935.CrossRefGoogle Scholar
Loday, J.-L. and Ronco, M., Combinatorial Hopf algebras (2008), arXiv:0810.0435.Google Scholar
Manchon, D., Hopf algebras, from basics to applications to renormalization, Comptes Rendus des Rencontres Mathematiques de Glanon (2001).Google Scholar
Milner, R., The space and motion of communicating agents (Cambridge University Press, 2008).Google Scholar
Radford, D. E., Hopf algebras (World Scientific Publishing Europe Ltd, UK, 2012).Google Scholar
Rotheray, L., Hopf Subalgebras from Green's Functions MSc Thesis (Humboldt-Universität zu Berlin, 2015).Google Scholar
Sevegnani, M. and Calder, M., Bigraphs with sharing, TR-2010-310, DCS Technical Report Series (Department of Computing Science, University of Glasgow, 2010).Google Scholar
Yeats, K., A Hopf algebraic approach to Schur function identities, arXiv:1511.06337v4.Google Scholar