Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T19:20:41.277Z Has data issue: false hasContentIssue false

VANISHING OF COHOMOLOGY OVER COMPLETE INTERSECTION RINGS

Published online by Cambridge University Press:  18 December 2014

ARASH SADEGHI*
Affiliation:
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a complete intersection ring, and let M and N be R-modules. It is shown that the vanishing of ExtiR(M, N) for a certain number of consecutive values of i starting at n forces the complete intersection dimension of M to be at most n–1. We also estimate the complete intersection dimension of M*, the dual of M, in terms of vanishing of cohomology modules, ExtiR(M,N).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2014 

References

REFERENCES

1.Araya, T. and Yoshino, Y., Remarks on a depth formula, a grade inequality and a conjecture of Auslander Commun. Algebra 26 (1998), 37933806.CrossRefGoogle Scholar
2.Auslander, M., Anneaux de Gorenstein, et torsion en algèbre commutative, in Séminaire d'Algèbre commutative dirigé par Pierre Samuel, vol. 1966/67 (Secrétariat Mathématique, Paris, 1967).Google Scholar
3.Auslander, M., Modules over unramified regular local rings Illinois J. Math. 5 (1961), 631647.Google Scholar
4.Auslander, M. and Bridger, M., Stable module theory, vol. 94, Mem. of the AMS (American Mathematical Society, Providence, RI, 1969).Google Scholar
5.Avramov, L. L. and Buchweitz, R.-O., Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), 285318.Google Scholar
6.Avramov, L. L., Gasharov, V. N. and Peeva, I. V., Complete intersection dimension, Publ. Math. I.H.E.S. 86 (1997), 67114.CrossRefGoogle Scholar
7.Bergh, P., Modules with reducible complexity J. Algebra 310 (2007), 132147.Google Scholar
8.Bergh, P., On the vanishing of homology with modules of finite length, Math. Scand. 112 (1) (2013), 1118.Google Scholar
9.Bergh, P. and Jorgensen, D., The depth formula for modules with reducible complexity, Illinois J. Math. 55 (2) (2011), 465478.CrossRefGoogle Scholar
10.Dao, H., Decent intersection and tor-rigidity for modules over local hypersurfaces Trans. Am. Math. Soc. 365 (2013), 28032821.CrossRefGoogle Scholar
11.Evans, E. G. and Griffith, P., Syzygies, London Mathematical Society Lecture Note Series, vol. 106 (Cambridge University Press, Cambridge, UK, 1985).CrossRefGoogle Scholar
12.Gulliksen, T. H., A change of rings theorem with applications to Poincar’e series and intersection multiplicity, Math. Scand. 34 (1974), 167183.Google Scholar
13.Huneke, C. and Wiegand, R., Tensor products of modules and the rigidity of Tor Math. Ann. 299 (1994), 449476.CrossRefGoogle Scholar
14.Jothilingam, P., Test modules for projectivity Proc. Am. Math. Soc. 94 (1985), 593596.Google Scholar
15.Jothilingam, P., Syzygies and ext, Math. Z. 188 (1985), 278282.Google Scholar
16.Jothilingam, P. and Duraivel, T., Test modules for projectivity of duals, Commun. Algebra 38 (8) (2010), 27622767.Google Scholar
17.Lichtenbaum, S., On the vanishing of tor in regular local rings Illinois J. Math. 10 (1966), 220226.CrossRefGoogle Scholar
18.Murthy, M. P., Modules over regular local rings Illinois J. Math. 7 (1963), 558565.CrossRefGoogle Scholar
19.Peskine, C. and Szpiro, L., Dimension projective finie et cohomologie locale Inst. Hautes Ètudes Sci. Publ. Math. 42 (1973), 47119.Google Scholar
20.Rotman, J., An Introduction to homological algebra (Academic Press, New York, NY, 1979).Google Scholar
21.Sadeghi, A., A note on the depth formula and vanishing of cohomology, preprint, 2012, arXiv:1204.4083 [math.AC].Google Scholar
22.Tchernev, A., Free direct summands of maximal rank and rigidity in projective dimension two, Commun. Algebra 34 (2) (2006), 671679.Google Scholar