Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T19:38:00.536Z Has data issue: false hasContentIssue false

Square integrable highest weight representations

Published online by Cambridge University Press:  18 May 2009

Karl-Hermann Neeb
Affiliation:
Mathematisches Institut, Universität Erlangen-N¨urnberg, Blsmarckstrasse 1½, D-90154 Erlangen, Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If G is the group of holomorphic automorphisms of a bounded symmetric domain, then G has a distinguished class of irreducible unitary representations called the holomorphic discrete series of G. These representations have been studied by Harish-Chandra in [7]. On the Lie algebra level, the Harish-Chandra modules corresponding to the holomorphic discrete series representations are highest weight modules. Even for G as above, it turns out that not all the unitary highest weight modules belong to the holomorphic discrete series but there exists a condition on the highest weight which characterizes the holomorphic discrete series among the unitary highest weight representations. They can be defined as those unitary highest weight representations with square integrable matrix coefficients.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1997

References

REFERENCES

1.Ali, S. T. and Antoine, J.-P., Quantization and Dequantization, in Quantization and infinite dimensional systems (Eds. Antoine, J.-P. et al. ), Plenum Press, New York, London, 1994.Google Scholar
2.Bourbaki, N., Groupes et algèbres de Lie, Chapitres 4, 5 et 6 (Masson, Paris, 1981).Google Scholar
3.Duflo, M., Construction de representations unitaires d'un groupe de Lie, Cours dété de CIME, Cortona 1980.Google Scholar
4.Duflo, M., Théorie de Mackey pour les groupes algébriques, Ada Math. 149 (1982), 153213.Google Scholar
5.Duflo, M., On the Plancherel formula for almost algebraic real Lie groups, Led. Notes in Math. 1077 (1984), Springer, 101165.CrossRefGoogle Scholar
6.Guichardet, A., Théorie de Mackey et mdthode des orbites selon M. Duflo, Expositio Math. 3 (1985), 303346.Google Scholar
7.Harish-Chandra, , Representations of semi-simple Lie groups, V, VI, Amer. J. Math. 78 (1956), 141, 564–628.CrossRefGoogle Scholar
8.Hilgert, J., Hofmann, K. H. and Lawson, J. D., Lie Groups, Convex Cones, and Semigroups (Oxford University Press, 1989).Google Scholar
9.Hilgert, J. and Neeb, K.-H., Lie semigroups and their applications, Lecture Notes in Math. 1552 Springer, 1993.Google Scholar
10.Hilgert, J. and Neeb, K.-H., Compression semigroups of open orbits on complex manifolds, Arkiv for Math. 33 (1995), 293322.CrossRefGoogle Scholar
11.Neeb, K.-H., Globality in Semisimple Lie Groups, Annales de Vlnstitut Fourier 40 (1990), 493536.CrossRefGoogle Scholar
12.Neeb, K.-H., Invariant subsemigroups of Lie groups, Memoirs of the Amer. Math. Soc. 499 (1993).Google Scholar
13.Neeb, K.-H., Realization of general unitary highest weight representations, Preprint, Technische Hochschule Darmstadt 1662 (1994).Google Scholar
14.Neeb, K.-H., Holomorphic representations and coherent states, in Quantization and infinite dimensional systems (Eds. Antoine, J.-P. et al. ), Plenum Press, New York, London, 1994.Google Scholar
15.Neeb, K.-H., On closedness and simple connectedness of adjoint and coadjoint orbits, Manuscripta Math. 82 (1994), 5165.CrossRefGoogle Scholar
16.Neeb, K.-H., Holomorphic representation theory II, Ada math. 173 (1994), 103133.Google Scholar
17.Neeb, K.-H., Holomorphic representation theory I, Math. Ann. 301 (1995), 155181.CrossRefGoogle Scholar
18.Neeb, K.-H., On the convexity of the moment mapping for unitary highest weight representations, J. Fund. Anal. 127 (1995), 301325.CrossRefGoogle Scholar
19.Neeb, K.-H., Kahler structures and convexity properties of coadjoint orbits, Forum Math. 7 (1995), 349384.CrossRefGoogle Scholar
20.Neeb, K.-H., A Duistermaat-Heckman formula for admissible coadjoint orbits, Proceedings of “Workshop on Lie Theory and its Applications in Physics”, Clausthal, August, 1995 (Ed. Dobrev, Doebner), to appear.Google Scholar
21.Neeb, K.-H., Coherent states, holomorphic extensions, and highest weight representations, Pacific J. Math. 174 (1996), 497542.CrossRefGoogle Scholar
22.Perelomov, A. M., Generalized coherent states and their applications (Springer, Berlin, 1986).CrossRefGoogle Scholar
23.Vogan, D., The algebraic structure of the representations of semisimple Lie groups, Annals of Math. 109 (1979), 160.CrossRefGoogle Scholar
24.Wallach, N. R., Real reductive groups I (Academic Press Inc., Boston, New York, Tokyo, 1988).Google Scholar
25.Warner, G., Harmonic analysis on semisimple Lie groups I (Springer, Berlin, Heidelberg, New York, 1972).Google Scholar
26.Wildberger, N. J., On the Fourier transform of a compact semisimple Lie group, J. Austral. Math. Soc., Ser. A 56 (1994), 64116.CrossRefGoogle Scholar
27.Wolf, J., Unitary representations on partially holomorphic cohomology spaces, Mem. of the Amer. Math. Soc. 138 (1974).Google Scholar
28.Wolf, J., Classification and Fourier Inversion for parabolic subgroups with square integrable nilradical, Mem. of the Amer. Math. Soc. 225 (1979).Google Scholar