Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T07:14:14.466Z Has data issue: false hasContentIssue false

Spectral decomposition of spherical immersions with respect to the Jacobi operator

Published online by Cambridge University Press:  18 May 2009

J. Arroyo
Affiliation:
Departamento De Matemáticas, Universidad Del PaíS Vasco/Ehu, Apto 644. 48080 Bilbao, Spain
M. Barros
Affiliation:
Departamento De Geometría Y Topología, Universidad De Granada, 8071 Granada, Spain
O. J. Garay
Affiliation:
Departamento De Matemáticas, Universidad Del PaíS Vasco/Ehu, Apto 644. 48080 Bilbao, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the spectral decomposition with respect to the Jacobi operator, J, of spherical immersions and characterize those with a simple decomposition in terms of the Finite Chen-type submanifolds. As a consequence, we give an application to the inverse problem for J.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1998

References

1.Barros, M., Ferrández, A. and Lucas, P., Spherical 2-type hypersurfaces. Pulicaciones del Departamento de Matemáticas. Univ. de Murcia. No 1 (1991).Google Scholar
2.Barros, M. and Garay, O. J., Euclidean submanifolds with Jacobi mean curvature vector field, to appear in J. Geometry.Google Scholar
3.Chen, B.-Y., 2-type submanifolds and their applications, Chinese J. Math. 14 (1986), 114.Google Scholar
4.Chen, B.-Y., Total mean curvature and submanifolds of finite type, (World Scientific, Singapore, 1984).CrossRefGoogle Scholar
5.Chen, B.-Y., Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169188.Google Scholar
6.Chen, B.-Y., A report on submanifolds of Finite Type, Soochow J. Math. 22 (1996), 117337.Google Scholar
7.Donnelly, H., Spectral invariants of the second variation operator, Illinois J. Math. 21 (1977), 185189.CrossRefGoogle Scholar
8.Hasanis, T. and Vlachos, T., Spherical 2-type Hypersurfaces, J. Geometry 40 (1991), 8294.CrossRefGoogle Scholar
9.Hasegawa, T., Spectral geometry of closed minimal submanifolds in a space form real or complex, Kodai Math. J. 3 (1980), 224252.CrossRefGoogle Scholar
10.Li, S.-J. and Houh, C.-S., Generalized Chen submanifolds, to appear in J. Geometry, (special issue dedicated to Professor A. Barlotti).Google Scholar
11.Simons, J., Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62105.CrossRefGoogle Scholar