Article contents
Spectra of conjugated ideals in group algebras of abelian groups of finite rank and control theorems
Published online by Cambridge University Press: 18 May 2009
Extract
Throughout kwill denote a field. If a group Γ acts on aset A we say an element is Γ-orbital if its orbit is finite and write ΔΓ(A) for the subset of such elements. Let I be anideal of a group algebra kA; we denote by I+ the normal subgrou(I+1)∩A of A. A subgroup B of an abelian torsion-free group A is said to be dense in A if A/B is a torsion-group. Let I be an ideal of a commutative ring K; then the spectrum Sp(I) of I is the set of all prime ideals P of K such that I≤P. If R is a ring, M is an R-module and x ɛ M we denote by the annihilator of x in R. We recall that a group Γ is said to have finite torsion-free rank if it has a finite series in which each factoris either infinite cyclic or locally finite; its torsion-free rank r0(Γ) is then defined to be the number of infinite cyclic factors in such a series.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1996
References
REFERENCES
- 5
- Cited by