Article contents
Some results on coherent rings II
Published online by Cambridge University Press: 18 May 2009
Extract
According to Bourbaki [1, pp. 62–63, Exercise 11], a left (resp. right) A-module M is said to be pseudo-coherent if every finitely generated submodule of M is finitely presented, and is said to be coherent if it is both pseudo-coherent and finitely generated. This Bourbaki reference contains various results on pseudo-coherent and coherent modules. Then, in [1, p. 63, Exercise 12], a ring which as a left (resp. right) module over itself is coherent is said to be a left (resp. right) coherent ring, and various results on and examples of coherent rings are presented. The result stated in [1, p. 63, Exercise 12a] is a basic theorem of [2] and first appeared there. A variety of results on and examples of coherent rings and modules are presented in [3].
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1967
References
- 12
- Cited by