We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Institute of Mathematics, Romanian Academy, P.O. Box 1–764, RO–014700 Bucharest, Romania and Université Louis Pasteur, Mathématique, 7, rue René Descartes, 67084 Strasbourg, France e-mail: [email protected]
FLORIAN LUCA (MORELIA)
Affiliation:
Instituto de Matemáticas, Universidad Autónoma de México, C.P. 58089, Morelia, Michoácan, México e-mail: [email protected]
MAURICE MIGNOTTE (STRASBOURG)
Affiliation:
Université Louis Pasteur, Mathématique, 7, rue René Descartes, 67084 Strasbourg, France e-mail: [email protected]
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove that the only solutions in coprime positive integers to the equation
are (x, y, z)=(n!–2, 1, 1, n), n≥3.
1.Bugeaud, Y.Linear forms in p-adic logarithms and the Diophantine equation (xn - 1)/(x-1) = yq, Math. Proc. Cambridge Philos. Soc.127 (1999), 373–381.CrossRefGoogle Scholar
2
2.Bugeaud, Y. and Laurent, M.Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Th.61 (1996), 311–342.CrossRefGoogle Scholar
3
3. F. Luca, M. Mignotte and Y. Roy, On the equation . Glasgow. Math. J. 42 (2000), 351–357.Google Scholar