Article contents
Simultaneous Extension of Partial Endomorphisms of Groups
Published online by Cambridge University Press: 18 May 2009
Extract
Let μ be a homomorphic mapping of some subgroup A of the group G onto a subgroup Ḃ (not necessarily distinct from A) of G; then we call μ a partial endomorphism of G. If A coincides with G, that is, if the homomorphism is defined on the whole of G, we speak of a total endomorphism; this is what is usually called an endomorphism of G. A partial (or total) endomorphism μ*extends or continues a partial endomorphism μ if the domain of μ* contains the domain of μ, that is, μ* is defined for (at least) all those elements for which μ. is defined, and moreover μ* coincides with μ where μ is defined.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1954
References
REFERENCES
- 3
- Cited by