Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T20:05:07.133Z Has data issue: false hasContentIssue false

Regular ω-semigroups

Published online by Cambridge University Press:  18 May 2009

W. D. Munn
Affiliation:
University of Glasgow and University of Stirling
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let S be a semigroup whose set E of idempotents is non-empty. We define a partial ordering ≧ on E by the rule that ef and only if ef = f = fe. If E = {ei: i∈ N}, where N denotes the set of all non-negative integers, and if the elements of E form the chain

then S is called an ω-semigroup.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1968

References

REFERENCES

1.Brack, R. H., A survey of binary systems, Ergebnisse der Math., Neue Folge, Vol. 20 (Berlin, 1958).CrossRefGoogle Scholar
2.Clifford, A. H., Semigroups admitting relative inverses, Annals of Math. 42 (1941), 10371049.CrossRefGoogle Scholar
3.Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups, Math. Surveys of the American Math. Soc. 7 Vol. 1 (Providence, R.I., 1961) and Vol. 2 (Providence, R.I., 1967).Google Scholar
4.Liber, A. E., On the theory of generalised groups. Doklady Akad. Nauk SSSR 97 (1954), 2528. (Russian.)Google Scholar
5.Munn, W. D., Uniform semilattices and bisimple inverse semigroups, Quarterly J. Math. Oxford Ser. (2) 17 (1966), 151159.CrossRefGoogle Scholar
6.Munn, W. D., The idempotent-separating congruences on a regular O-bisimple semigroup, Proc. Edinburgh Math. Soc. (2) 15 (1967), 233240.CrossRefGoogle Scholar
7.Rees, D., On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940), 387400.CrossRefGoogle Scholar
8.Reilly, N. R., Bisimple ω-semigroups, Proc. Glasgow Math. Assoc. 7 (1966), 160167.CrossRefGoogle Scholar
9.Warne, R. J., A characterization of certain regular d-classes in semigroups, Illinois J. Math. 9 (1965), 304306.CrossRefGoogle Scholar
10.Warne, R. J., A class of bisimple inverse semigroups, Pacific J. Math. 18 (1966), 563577.CrossRefGoogle Scholar