Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T14:01:05.850Z Has data issue: false hasContentIssue false

RECOGNIZING THE ALTERNATING GROUPS FROM THEIR PROBABILISTIC ZETA FUNCTION

Published online by Cambridge University Press:  11 October 2004

E. DAMIAN
Affiliation:
Dipartimento di Matematica, Università di Brescia, Via Valotti, 25133 Brescia, Italy e-mail: [email protected], [email protected]
A. LUCCHINI
Affiliation:
Dipartimento di Matematica, Università di Brescia, Via Valotti, 25133 Brescia, Italy e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $G$ be a finite group; there exists a uniquely determined Dirichlet polynomial $P_G(s)$ such that if $t \in \mathbb N$, then $P_G(t)$ gives the probability of generating $G$ with $t$ randomly chosen elements. We show that if $P_G(s)=P_{\text{Alt}(n)}(s)$, then $G/\text{Frat}\, G\cong \text{Alt}(n).$

Keywords

Type
Research Article
Copyright
© 2004 Glasgow Mathematical Journal Trust