Article contents
Quotient rings of semiprime rings with bounded index
Published online by Cambridge University Press: 18 May 2009
Extract
We say that a ring R has bounded index if there is a positive integer n such that an = 0 for each nilpotent element a of R. If n is the least such integer we say R has index n. For example, any semiprime right Goldie ring has bounded index, and so does any semiprime ring satisfying a polynomial identity [10, Theorem 10.8.2]. This paper is mainly concerned with the maximal (right) quotient ring Q of a semiprime ring R with bounded index. Several special cases of this situation have already received attention in the literature. If R satisfies a polynomial identity [1], or if every nonzero right ideal of R contains a nonzero idempotent [18] then it is known that Q is a finite direct product of matrix rings over strongly regular self-injective rings, the size of the matrices being bounded by the index of R. On the other hand if R is reduced (that is, has index 1) then Q is a direct product of a strongly regular self-injective ring and a biregular right self-injective ring of type III ([2] and [15]; the terminology is explained in [6]). We prove the following generalization of these results (see Theorems 9 and 11).
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1982
References
REFERENCES
- 12
- Cited by