Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T23:56:58.544Z Has data issue: false hasContentIssue false

PARA-BLASCHKE ISOPARAMETRIC HYPERSURFACES IN A UNIT SPHERE Sn + 1(1)*

Published online by Cambridge University Press:  30 March 2012

SHICHANG SHU
Affiliation:
Institute of Mathematics and Information Science, Xianyang Normal University, Xianyang 712000 Shaanxi, P.R. China e-mail: [email protected]
BIANPING SU
Affiliation:
Department of Science, Xi'an University of Architecture and Technology, Xi'an 710055 ShaanxiP.R. China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let A = ρ2i,jAijθi ⊗ θj and B = ρ2i,jBij θi ⊗ θj be the Blaschke tensor and the Möbius second fundamental form of the immersion x. Let D = A + λB be the para-Blaschke tensor of x, where λ is a constant. If x: MnSn + 1(1) is an n-dimensional para-Blaschke isoparametric hypersurface in a unit sphere Sn + 1(1) and x has three distinct Blaschke eigenvalues one of which is simple or has three distinct Möbius principal curvatures one of which is simple, we obtain the full classification theorems of the hypersurface.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2012

References

REFERENCES

1.Akivis, M. A. and Goldberg, V. V., Conformal differential geometry and its generalizations (Wiley, New York 1996).Google Scholar
2.Akivis, M. A. and Goldberg, V. V., A conformal differential invariant and the conformal rigidity of hypersurfaces, Proc. Amer. Math. Soc. 125 (1997), 24152424.CrossRefGoogle Scholar
3.Cartan, E., Sur des familles remarquables d'hypersurfaces isoparametriques dans les espace spheriques, Math. Z. 45 (1939), 335367.CrossRefGoogle Scholar
4.Cartan, E., Familles de surfaces isoparam'etriques dans les espace à courbure constante, Annali di Mat. 17 (1938), 177191.CrossRefGoogle Scholar
5.Cheng, Q-M. and Shu, S. C., A Möbius characterization of submanifolds, J. Math. Soc. Japan 58 (2006), 903925.CrossRefGoogle Scholar
6.Cheng, Q-M., Li, X. X. and Qi, X. R., A classification of hypersurfaces with parallel para-Blaschke tensor in S m+1, Int. J. Math. 21 (2010), 297316.CrossRefGoogle Scholar
7.Hu, Z. J. and Li, H., Classification of hypersurfaces with parallel Moebius second fundamental form in (n+1)-dimensional sphere, Sci. China Ser. A Math. 47 (3) (2004), 417430.CrossRefGoogle Scholar
8.Hu, Z. J. and Li, D. Y., Möbius isoparametric hypersurfaces with three distinct principal curvatures, Pacific Math. J. 232 (2007), 289311.CrossRefGoogle Scholar
9.Hu, Z. J., Li, H. and Wang, C. P., Classification of Möbius isoparametric hypersufaces in S 5, Monatsh. Math. 151 (2007), 202222.CrossRefGoogle Scholar
10.Li, H., Liu, H. L., Wang, C. P. and Zhao, G. S., Möbius isoparametric hypersurface in S n+1 with two distinct principal curvatures, Acta Math. Sinica, English Ser. 18 (2002), 437446.CrossRefGoogle Scholar
11.Li, H. and Wang, C. P., Möbius geometry of hypersurfaces with constant mean curvature and constant scalar curvature, Manuscr. Math. 112 (2003), 113.CrossRefGoogle Scholar
12.Li, X. X. and Zhang, F. Y., A Möbius characterization of submanifolds in real space forms with parallel mean curvature and constant scalar curvature, Manuscr. Math. 117 (2005), 135152.CrossRefGoogle Scholar
13.Li, X. X. and Peng, Y. J., Classification of Blaschke isoparametric hypersurfaces with three distinct Blaschke eigenvalues, Results Math. 58 (2010), 145172.CrossRefGoogle Scholar
14.Li, G. H., Möbius hypersurfaces in S n+1 with three distinct principal curvatures, J. Geom. 80 (2004), 154165.CrossRefGoogle Scholar
15.Liu, H. L., Wang, C. P. and Zhao, G. S., Möbius isotropic submanifolds in S n, Tôhoku Math. J. 53 (2001), 553569.CrossRefGoogle Scholar
16.Shu, S. C. and Liu, S. Y., Submanifolds with Möbius flat normal bundle in S n, Acta Math. Sinica, Chin. Ser. 48 (2005), 12211232.Google Scholar
17.Wang, C. P., Möbius geometry for hypersurfaces in S 4, Nagoya Math. J. 139 (1995), 120.CrossRefGoogle Scholar
18.Wang, C. P., Möbius geometry of submanifolds in S n, Manuscr. Math. 96 (1998), 517534.CrossRefGoogle Scholar
19.Zhong, D. X. and Sun, H. A., The hypersurfaces in a unit sphere with constant para-Blaschke eigenvalues, Acta Math. Sinica, Chin. Ser. 51 (2008), 579592.Google Scholar
20.Zhong, D. X. and Sun, H. A., The hypersurfaces in S 4 with constant para-Blaschke eigenvalues, Adv. Math., Chin. Ser. 37 (2008), 657669.Google Scholar