Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T10:40:12.465Z Has data issue: false hasContentIssue false

A p-ADIC HERMITIAN MAASS LIFT

Published online by Cambridge University Press:  17 April 2018

TOBIAS BERGER
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK e-mail: [email protected]
KRZYSZTOF KLOSIN
Affiliation:
Department of Mathematics, Queens College CUNY, 65-30 Kissena Blvd, Queens, NY 11367, USA e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For K, an imaginary quadratic field with discriminant −DK, and associated quadratic Galois character χK, Kojima, Gritsenko and Krieg studied a Hermitian Maass lift of elliptic modular cusp forms of level DK and nebentypus χK via Hermitian Jacobi forms to Hermitian modular forms of level one for the unitary group U(2, 2) split over K. We generalize this (under certain conditions on K and p) to the case of p-oldforms of level pDK and character χK. To do this, we define an appropriate Hermitian Maass space for general level and prove that it is isomorphic to the space of special Hermitian Jacobi forms. We then show how to adapt this construction to lift a Hida family of modular forms to a p-adic analytic family of automorphic forms in the Maass space of level p.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2018 

References

REFERENCES

1. Andreatta, F., Iovita, A. and Pilloni, V., p-adic families of Siegel modular cuspforms, Ann. Math. 181 (2) (2015), 623697.Google Scholar
2. Atkin, A. O. L. and Li, W. C. W., Twists of newforms and pseudo-eigenvalues of W-operators, Invent. Math. 48 (3) (1978), 221243.Google Scholar
3. Atobe, H., Pullbacks of Hermitian Maass lifts, J. Number Theory 153 (2015), 158229.Google Scholar
4. Banerjee, D., Ghate, E. and Narasimha Kumar, V. G., Λ-adic forms and the Iwasawa main conjecture, in Guwahati Workshop on Iwasawa Theory of Totally Real Fields, Ramanujan Mathematical Society Lecture Notes Series, vol. 12 (Ramanujan Mathematical Society, Mysore, 2010), 1547.Google Scholar
5. Böcherer, S. and Schmidt, C.-G., p-adic measures attached to Siegel modular forms, Ann. Inst. Fourier (Grenoble) 50 (5) (2000), 13751443.Google Scholar
6. Chenevier, G., Familles p-adiques de formes automorphes pour GLn, J. R. Angew. Math. 570 (2004), 143217.Google Scholar
7. Emerton, M., Pollack, R. and Weston, T., Variation of Iwasawa invariants in Hida families, Invent. Math. 163 (3) (2006), 523580.Google Scholar
8. Eischen, E. and Wan, X., p-adic L-functions of finite slope forms on unitary groups and Eisenstein series. J. Inst. Math. Jussieu. 15 (2016), 471510.Google Scholar
9. Eichler, M. and Zagier, D., The theory of Jacobi forms, Progress in Mathematics, vol. 55 (Birkhäuser Boston, Inc., Boston, MA, 1985).Google Scholar
10. Gritsenko, V. A., The Maass space for SU(2,2). The Hecke ring, and zeta functions, Trudy Mat. Inst. Steklov. 183 (1990), 68–78, 223225. Translated in Galois theory, rings, algebraic groups and their applications (Russian), Proc. Steklov Inst. Math. 4 (1991), 75–86.Google Scholar
11. Grosche, J., Über verallgemeinerte Hermitesche Modulgruppen, J. R. Angew. Math. 302 (1978), 137166.Google Scholar
12. Guerzhoy, P., On p-adic families of Siegel cusp forms in the Maaß Spezialschar, J. R. Angew. Math. 523 (2000), 103112.Google Scholar
13. Haverkamp, K., Hermitesche Jacobiformen, Schriftenreihe des Mathematischen Instituts der Universität Münster. 3. Serie, vol. 15 (Univ. Münster, Münster, 1995), 105.Google Scholar
14. Hida, H., Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Invent. Math. 85 (3) (1986), 545613.Google Scholar
15. Hida, H., Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, (Cambridge University Press, Cambridge, 1993).Google Scholar
16. Harris, M., Li, J.-S. and Skinner, C. M., The Rallis inner product formula and p-adic L-functions, in Proceedings of the Conference on Automorphic Representations, L-functions and Applications: Progress and Prospects, Ohio State University Mathematics Research Institute Publ., vol. 11 (Walter de Gruyter, Berlin, 2005), 225255.Google Scholar
17. Ibukiyama, T., Saito-Kurokawa liftings of level N and practical construction of Jacobi forms, Kyoto J. Math. 52 (1) (2012), 141178.Google Scholar
18. Ikeda, T., On the lifting of Hermitian modular forms, Compos. Math. 144 (5) (2008), 11071154.Google Scholar
19. Kawamura, H.-A., On certain constructions of p-adic Siegel modular forms of even genus, preprint (2010) arXiv:1011.6476.Google Scholar
20. Klingen, H., Bemerkung über Kongruenzuntergruppen der Modulgruppe n-ten Grades, Arch. Math. 10 (1959), 113122.Google Scholar
21. Klosin, K., The Maass space for U(2,2) and the Bloch–Kato conjecture for the symmetric square motive of a modular form, J. Math. Soc. Jpn. 67 (2) (2015), 797860.Google Scholar
22. Kikuta, T. and Mizuno, Y., On p-adic Hermitian Eisenstein series and p-adic Siegel cusp forms, J. Number Theory 132 (9) (2012), 19491961.Google Scholar
23. Kohnen, W., Newforms of half-integral weight, J. R. Angew. Math. 333 (1982), 3272.Google Scholar
24. Kojima, H., An arithmetic of Hermitian modular forms of degree two, Invent. Math. 69 (2) (1982), 217227.Google Scholar
25. Krieg, A., The Maaß spaces on the Hermitian half-space of degree 2, Math. Ann. 289 (4) (1991), 663681.Google Scholar
26. Li, Z., On Λ-adic Saito-Kurokawa lifting and its application, PhD thesis (Columbia University, 2009).Google Scholar
27. Miyake, T., Modular forms (Springer-Verlag, Berlin, 1989), Translated from the Japanese by Yoshitaka Maeda.Google Scholar
28. Manickam, M., Ramakrishnan, B., and Vasudevan, T. C., On Saito-Kurokawa descent for congruence subgroups, Manuscr. Math. 81 (1–2) (1993), 161182.Google Scholar
29. Mazur, B. and Wiles, A., Class fields of abelian extensions of Q, Invent. Math. 76 (2) (1984), 179330.Google Scholar
30. Shintani, T., On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975), 83126.Google Scholar
31. Stevens, G., Λ-adic modular forms of half-integral weight and a Λ-adic Shintani lifting, in Arithmetic geometry (Tempe, AZ, 1993) (Childress, N. and Jones, J. W., Editors), Contemporary Mathematics, vol. 174 (American Mathematics Society, Providence, RI, 1994), 129151.Google Scholar
32. Skinner, C. and Urban, E., The Iwasawa main conjectures for GL 2, Invent. Math. 195 (1) (2014), 1277.Google Scholar
33. Taylor, R., On congruences between modular forms, PhD Thesis, (Princeton University, Princeton, 1988).Google Scholar
34. Urban, E., Eigenvarieties for reductive groups, Ann. Math. (2) 174 (3) (2011), 16851784.Google Scholar
35. Wiles, A., On ordinary Λ-adic representations associated to modular forms, Invent. Math. 94 (3) (1988), 529573.Google Scholar
36. Wiles, A., The Iwasawa conjecture for totally real fields, Ann. Math. 131 (3) (1990), 493540.Google Scholar