Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T07:00:09.423Z Has data issue: false hasContentIssue false

On the Wielandt subgroup of infinite soluble groups

Published online by Cambridge University Press:  18 May 2009

Rolf Brandl
Affiliation:
Mathematisches InstitutUniversität WurzburgAm Hubland 12D-8700 WürzburgWest Germany
Silvana Franciosi
Affiliation:
Istituto di Matematica Facoltà di ScienzeUniversitá di Salerno1–84100 Salerno, Italy
Francesco de Giovanni
Affiliation:
Dipartimento di MatematicaUniversità di NapoliVia Mezzocannone 81–0134 Napoli, Italy
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Wielandt subgroup w(G) of a group G is defined to be the intersection of the normalizers of all the subnormal subgroups of G. If G is a group satisfying the minimal condition on subnormal subgroups then Wielandt [10] showed that w(G) contains every minimal normal subgroup of G, and so contains the socle of G, and, later, Robinson [6] and Roseblade [9] proved that w(G) has finite index in G.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1990

References

REFERENCES

1.Baer, R., Kern, Der, eine charakteristische Untergruppe, Compositio Math. 1 (1934), 254283.Google Scholar
2.Cooper, C. D. H., Power automorphisms of a group, Math. Z. 107 (1968), 335356.CrossRefGoogle Scholar
3.Cossey, J., The Wielandt subgroup of a polycyclic group, Australian National University, Math. Research Report Series 19 (1988).Google Scholar
4.Hall, P., On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595622.CrossRefGoogle Scholar
5.Robinson, D. J. S., Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc. 60 (1964), 2138.CrossRefGoogle Scholar
6.Robinson, D. J. S., On the theory of subnormal subgroups, Math. Z. 89 (1965), 3051.CrossRefGoogle Scholar
7.Robinson, D. J. S., A note on groups of finite rank, Compositio Math. 21 (1969), 240246.Google Scholar
8.Robinson, D. J. S., Finiteness conditions and generalized soluble groups (Springer, 1972).CrossRefGoogle Scholar
9.Roseblade, J. E., On certain subnormal coalition classes, J. Algebra 1 (1964), 132138.CrossRefGoogle Scholar
10.Wielandt, H., Uber den Normalisator der subnormalen Untergruppen, Math. Z. 69 (1958), 463465.CrossRefGoogle Scholar