Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T07:56:39.776Z Has data issue: false hasContentIssue false

On the Occurrence of large gaps between prime numbers

Published online by Cambridge University Press:  18 May 2009

R. J. Cook
Affiliation:
University of Sheffield, Sheffield S10 2TN
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let pn denote the nth prime number. Erdös asked whether

for some constant c<1. Moreno [7] obtained a somewhat weaker result and subsequently Wolke [10] proved that

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1979

References

REFERENCES

1.Chandrasekharan, K., Arithmetical functions (Springer-Verlag, 1970).CrossRefGoogle Scholar
2.Davenport, H., Multiplicative number theory (Markham, 1967).Google Scholar
3.Huxley, M. N., On the difference between consecutive primes, Invent. Math. 15 (1972), 164170.CrossRefGoogle Scholar
4.Huxley, M. N., Large values of Dirichlet polynomials II, Acta Arith. 27 (1975), 159169.CrossRefGoogle Scholar
5.Ingham, A. E., On the estimation of N(σ, T), Quart. J. Math. Oxford Ser(l) 11 (1940), 291292.Google Scholar
6.Montgomery, H. L., Topics in multiplicative number theory, Lecture Notes in Mathematics No. 227 (Springer-Verlag, 1971).CrossRefGoogle Scholar
7.Moreno, C. J., The average size of gaps between primes, Mathematika 21 (1974), 96100.CrossRefGoogle Scholar
8.Selberg, A., On the normal density of primes in small intervals and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 119.Google Scholar
9.Warlimont, R., Uber die Haufigkeit grosser Differenzen konsekutiver Primzahlen, Monatsh. Math. 83 (1977), 5963.Google Scholar
10.Wolke, D., Grosse Differenzen zwischen aufeinanderfolgenden Primzahlen, Math. Ann. 218 (1975), 269271.Google Scholar