No CrossRef data available.
Article contents
On the Arens semi-regularity of weighted group algebras
Published online by Cambridge University Press: 18 May 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper we prove that the weighted group algebra L1 (G, w) is semi-regular if and only if G is either abelian or discrete.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1994
References
REFERENCES
1.Bonsall, F. F. and Duncan, J., Complete normed algebras (Springer-Verlag, 1973).CrossRefGoogle Scholar
2.Duncan, J. and Hossenium, S. R. R., The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh, Sect A 84 (1979), 309–325.CrossRefGoogle Scholar
3.Gaundry, G. I., Multipliers of weighted Lebesgue and measure spaces, Proc. London Math. Soc. (3) 19 (1969), 327–340.CrossRefGoogle Scholar
5.Grosser, M., Arens semi-regular Banach algebras, Monatsh. Math. 98 (1984), 41–52.CrossRefGoogle Scholar
6.Grosser, M., Arens semi-regularity of the algebra of compact operators, Illinois J. Math. 31 (1987), 554–573.CrossRefGoogle Scholar
8.Losert, V. and Rindler, H., Asymptotically central functions and invariant extensions of Dirac measures, in Probability measures on groups, VII (Oberwolfach, 1983), Lecture notes in Mathematics N, 1064 (Springer-Verlag, 1984), 368–378.CrossRefGoogle Scholar
9.Reiter, H., Classical harmonic analysis and locally compact groups (Oxford University Press, 1968).Google Scholar
10.Tomiuk, B. J., Multipliers on Banach algebras, Studia Math. 54 (1976), 267–283.CrossRefGoogle Scholar
11.Ülger, A., Arens regularity sometimes implies the R. N. P., Pacific J. Math. 143 (1990), 377–399.CrossRefGoogle Scholar
12.Wong, Pak-Ken, Arens product and the algebra of double multipliers, Proc. Amer. Math. Soc. 94 (1985), 441–444.CrossRefGoogle Scholar
13.Young, N. J., The irregularity of multiplication in group algebras, Quart. J. Math. 24 (1973), 59–62.CrossRefGoogle Scholar
14.Young, N. J., Periodicity of functionals and representations of normed algebras on reflexive spaces, Proc. Edinburgh Math. Soc. 20 (1976), 99–120.CrossRefGoogle Scholar
You have
Access