Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T09:12:20.949Z Has data issue: false hasContentIssue false

On linear recurrence sequences with polynomial coefficients

Published online by Cambridge University Press:  18 May 2009

A. J. van der Poorten
Affiliation:
Centre for Number Theory Research, School of Mathematics, Physics, Computing and Electronics, Macquarie UniversityNSW 2109, Australia
I. E. Shparlinski
Affiliation:
Centre for Number Theory Research, School of Mathematics, Physics, Computing and Electronics, Macquarie UniversityNSW 2109, Australia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider sequences (Ah)defined over the field ℚ of rational numbers and satisfying a linear homogeneous recurrence relation

with polynomial coefficients sj;. We shall assume without loss of generality, as we may, that the sj, are defined over ℤ and the initial values A0A]…, An1 are integer numbers. Also, without loss of generality we may assume that S0 and Sn have no non-negative integer zero. Indeed, any other case can be reduced to this one by making a shift hhl – 1 where l is an upper bound for zeros of the corresponding polynomials (and which can be effectively estimated in terms of their heights)

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1996

References

REFERENCES

1.Amice, Y., Les nombres p-adiques (Presses Universitaires de France, 1975).Google Scholar
2.Berstel, J. and Mignotte, M., Deux properties decidables des suites recurrences linearies, Bull. Soc. Math. France 104 (1976), 175184.CrossRefGoogle Scholar
3.Evertse, J.-H., On sums of S-units and linear recurrences, Compositio Math. 53 (1984), 225244.Google Scholar
4.Flahive, M. R., Integral solutions of linear systems, in Number theory, De Koninck, J.-M., ed., (Walter de Gruyter & Co., Berlin, 1989), 213219.Google Scholar
5.Lipshitz, L., D-finite power series, J. Algebra 122 (1989), 353373.CrossRefGoogle Scholar
6.Lipshitz, L. and Poorten, A. J. van der, Rational functions, diagonals, automata and arithmetic, in Number theory, Mollin, R. A., ed., (Walter de Gruyter & Co., Berlin, 1990), 339358.Google Scholar
7.Loxton, J. H. and Poorten, A. J. van der, On the growth of recurrence sequences, Math. Proc. Camb. Phil. Soc. 81 (1977), 369376.CrossRefGoogle Scholar
8.Mignotte, M., An inequality about irreducible factors of integer polynomials, J. Number Theory 30 (1988), 156166.CrossRefGoogle Scholar
9.Pólya, G. and Szeg὇, G., Problems and theorems inanalysis,4th edition, (Springer-Verlag, 1975).Google Scholar
10.van der Poorten, A. J., Some facts that should be better known, especially about rational functions, in Number theory and applications, Mollin, R. A. ed., (Kluwer Acad. Publ., The Netherlands, 1989), 497528.Google Scholar
11.van der Poorten, A. J., Power series representing algebraic functions, in Séminaire de théorie des nombres, Paris 1990–91, David, S., ed. (Birkhäuser, Boston, 1992), 241262.Google Scholar
12.van der Poorten, A. J. and Schlickewei, H. P., Zeros of recurrence sequences, Bull. Austral. Math. Soc. 44 (1991), 215223.CrossRefGoogle Scholar
13.van der Poorten, A. J. and Schlickewei, H. P., Additive relations in fields, J. Austral. Math. Soc. 51 (1991), 154170.CrossRefGoogle Scholar
14.van der Poorten, A. J. and Shparlinski, I. E., On the number of zeros of exponential polynomials and related questions, Bull. Austral. Math. Soc. 46 (1992), 401412.CrossRefGoogle Scholar
15.Robba, P., Zeros de suites recurrentes linearies, Groupe d'etude d'Analyse ultrametrique,13 (1978/1978) 15.Google Scholar
16.Shparlinski, I. E., On the distribution of values of recurring sequences and the Bell numbers in finite fields, Europ. J. Combinatorics, 12 (1991), 8187.CrossRefGoogle Scholar
17.Stanley, R. P., Differentiably finite power series, Europ. J. Combinatorics, 1 (1980), 175188.CrossRefGoogle Scholar