No CrossRef data available.
Article contents
ON GILP’S GROUP-THEORETIC APPROACH TO FALCONER’S DISTANCE PROBLEM
Published online by Cambridge University Press: 28 July 2020
Abstract
In this paper, we follow and extend a group-theoretic method introduced by Greenleaf–Iosevich–Liu–Palsson (GILP) to study finite points configurations spanned by Borel sets in $\mathbb{R}^n,n\geq 2,n\in\mathbb{N}.$ We remove a technical continuity condition in a GILP’s theorem in [Revista Mat. Iberoamer31 (2015), 799–810]. This allows us to extend the Wolff–Erdogan dimension bound for distance sets to finite points configurations with k points for $k\in\{2,\dots,n+1\}$ forming a $(k-1)$ -simplex.
- Type
- Research Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust