Article contents
On generalized braid groups
Published online by Cambridge University Press: 18 May 2009
Extract
Braid groups were introduced by Artin [1]. These groups have been studied extensively—see [2], [9] and the references cited there. Recently work has been done on “circular” braid groups and other “braid-like” groups [7], [10]. In this paper we formulate the concept of a generalized braid group, and we begin a study of the structure of such groups. In particular for such a group G1, there is a homomorphism from G onto the infinite cyclic group, the kernel of which is the derived group G1 of G. We study G1. Our results generalize results of Gorin and Lin [5], who considered the case when G is a classical braid group B(n ≥ 3). They showed that is free abelian of rank 2 if n = 3, 4 and is trivial if n ≥ 5. They also showed that is finitely presented.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1986
References
REFERENCES
- 6
- Cited by