Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:50:20.721Z Has data issue: false hasContentIssue false

On commutative V*-algebras II

Published online by Cambridge University Press:  18 May 2009

P. G. Spain
Affiliation:
University of Glasgow, Glasgow, G12 8QQ
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the commutative V*-algebras with relatively weakly compact unit spheres are those that are representable by means of hermitian spectral measures. This provides a more unified approach to the results of [15], and allows us to generalise some of them.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1972

References

REFERENCES

1.Bartle, R. G., Dunford, N. and Schwartz, J. T., Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289305.CrossRefGoogle Scholar
2.Berkson, E., A characterization of scalar type operators on reflexive Banach spaces, Pacific J. Math. 13 (1963), 365373.CrossRefGoogle Scholar
3.Berkson, E., Some characterizations of C*-algebras, Illinois J. Math. 10 (1966), 18.CrossRefGoogle Scholar
4.Berkson, E., Action of W*-algebras in Banach spaces, Math. Ann. 189 (1970), 261271.CrossRefGoogle Scholar
5.Berkson, E. and Dowson, H. R., Prespectral operators, Illinois J. Math. 13 (1969), 291315.CrossRefGoogle Scholar
6.Dixmier, J., Les algèbres d'opérateurs dans l'espace hilbertien (Paris, 1957).Google Scholar
7.Dunford, N. and Schwartz, J. T., Linear operators (New York, 1958 and 1963).Google Scholar
8.Edward, D. A. and Tulcea, C. T. Ionescu, Some remarks on commutative algebras of operators on Banach spaces, Trans. Amer. Math. Soc. 93 (1959), 541551.CrossRefGoogle Scholar
9.Grothendieck, A., Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129173.CrossRefGoogle Scholar
10.Lumer, G., Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 2943.CrossRefGoogle Scholar
11.Palmer, T. W., Characterizations of C*-algebras, Bull. Amer. Math. Soc. 74 (1968), 538540.CrossRefGoogle Scholar
12.Palmer, T. W., Unbounded normal operators on Banach spaces, Trans. Amer. Math. Soc. 133 (1968), 385414.CrossRefGoogle Scholar
13.Panchapagesan, T. V., Semigroups of scalar type operators in Banach spaces, Pacific J. Math. 30 (1969), 489517.CrossRefGoogle Scholar
14.Ringrose, J. R., Lecture notes on von Neumann algebras (Newcastle upon Tyne, 1967).Google Scholar
15.Spain, P. G., On commutative V*-algebras, Proc. Edinburgh Math. Soc. (2) 17 (1970), 173180.CrossRefGoogle Scholar
16.Spain, P. G., V*-algebras with weakly compact unit spheres, J. London Math. Soc. (2) 4 (1971), 6264.CrossRefGoogle Scholar