Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T10:12:47.220Z Has data issue: false hasContentIssue false

ON CLOSED GEODESICS IN THE LEAF SPACE OF SINGULAR RIEMANNIAN FOLIATIONS

Published online by Cambridge University Press:  10 March 2011

MARCOS M. ALEXANDRINO
Affiliation:
Instituto de Matemática e Estatística Universidade de São Paulo, Rua do Matão 1010,05508 090 São Paulo, Brazil e-mail: [email protected], [email protected]
MIGUEL ANGEL JAVALOYES
Affiliation:
Departamento de Geometría y Topología. Facultad de Ciencias, Universidad de Granada. Campus Fuentenueva s/n, 18071 Granada, Spain e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove the existence of closed geodesics in the leaf space of some classes of singular Riemannian foliations (s.r.f.), namely s.r.fs. that admit sections or have no horizontal conjugate points. We also investigate the shortening process with respect to Riemannian foliations.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2011

References

REFERENCES

1.Alexandrino, M. M., Singular Riemannian foliations with sections, Illinois J. Math. 48 (4) (2004), 11631182.CrossRefGoogle Scholar
2.Alexandrino, M. M., Proofs of conjectures about singular Riemannian foliations, Geom. Dedicata 119 (1) (2006), 219234.CrossRefGoogle Scholar
3.Alexandrino, M. M. and Töben, D., Singular Riemannian foliations on simply connected spaces, Differ. Geom. Appl. 24 (4) (2006), 383397.CrossRefGoogle Scholar
4.Alexandrino, M. M., Singular holonomy of singular Riemannian foliations with sections, Mat. Contemp. 33 (2007), 2354.Google Scholar
5.Alexandrino, M. M. and Töben, D., Equifocality of singular Riemannian foliations, Proc. Amer. Math. Soc. 136 (9) (2008), 32713280.CrossRefGoogle Scholar
6.Alexandrino, M. M., Desingularization of singular Riemannian foliation, Geom. Dedicata 149 (1) (2010), 397416.CrossRefGoogle Scholar
7.Bridson, M. R. and Haefliger, A., Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319 (Springer, New Mexico, 1999).CrossRefGoogle Scholar
8.Bourbaki, N., Éléments de mathématique. Groupes et algèbres de Lie. Chapitres 4, 5 et 6. Actualités Scientifiques et Industrielles, No. 1337 (Hermann, Paris, 1968).Google Scholar
9.Duistermaat, J. J. and Kolk, J. A. C., Lie groups (Springer-Verlag, Berlin, Heidelberg, 2000).CrossRefGoogle Scholar
10.Gonciulea, C., Infinite Coxeter groups virtually surject onto Z, Comment. Math. Helv. 72 (2) (1997), 257265.CrossRefGoogle Scholar
11.Guruprasad, K. and Haefliger, A., Closed geodesics on orbifolds, Topology 45 (3) (2006), 611641.CrossRefGoogle Scholar
12.Hosaka, T., Reflection groups of geodesic spaces and Coxeter groups, Topol. Appl. 153 (2006) 18601866.CrossRefGoogle Scholar
13.Jost, J., Riemannian geometry and geometric analysis, 2nd edn. (Universitext, Springer, New Mexico, 1998).CrossRefGoogle Scholar
14.Lytchak, A., Geometric resolution of singular Riemannian foliations, Geom. Dedicata 149 (1) (2010), 379395.CrossRefGoogle Scholar
15.Lytchak, A. and Thorbergsson, G., Variationally complete actions on nonnegatively curved manifolds, Illinois J. Math. 51 (2) (2007), 605615.CrossRefGoogle Scholar
16.Lytchak, A. and Thorbergsson, G., Curvature explosion in quotients and applications, J. Differ. Geom. 85 (1) (2010), 117139.CrossRefGoogle Scholar
17.Moerdijk, I. and Mrčun, J., Introduction to foliations and lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91 (Cambridge University Press, Cambridge, UK, 2003).CrossRefGoogle Scholar
18.Molino, P., Riemannian foliations, Progress in Mathematics vol. 73 (Birkhäuser, Boston, 1988).CrossRefGoogle Scholar
19.Terng, C.-L. and Thorbergsson, G., Submanifold geometry in symmetric spaces, J. Differ. Geom. 42 (3) (1995), 665718.CrossRefGoogle Scholar
20.Thorbergsson, G., A survey on isoparametric hypersurfaces and their generalizations, in Handbook of differential geometry, vol. 1 (Elsevier Science B.V., Netherlands, 2000).Google Scholar