Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T07:07:39.879Z Has data issue: false hasContentIssue false

On a class of operators

Published online by Cambridge University Press:  18 May 2009

Youngoh Yang
Affiliation:
Department Of Mathematics, Cheju National University, Cheju 690-756, Korea E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we show that the Weyl spectrum of an operator of class W satisfies the spectral mapping theorem for analytic functions and give the equivalent conditions for an operator of the form normal + compact to be polynomially compact.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1998

References

1.Berberian, S. K., The Weyl's spectrum of an operator, Indiana Univ. Math. J. 20(6) (1970), 529544.CrossRefGoogle Scholar
2.Coburn, L. A., Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285288.CrossRefGoogle Scholar
3.Conway, J. B., Subnormal operators(Pitman, Boston, 1981).Google Scholar
4.Gramsch, B. and Lay, D., Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 1732.CrossRefGoogle Scholar
5.Halmos, P. R., A Hilbert space problem book. (Springer-Verlag, 1984).Google Scholar
6.Harte, R. E., Invertibility and singularity for bounded linear operators (Marcel Dekker, New York, 1988).Google Scholar
7.Kato, T., Perturbation theory for linear operators (Springer-Verlag, 1966).Google Scholar
8.Oberai, K. K., On the Weyl spectrum, Illinois J. Math 18 (1974), 208212.CrossRefGoogle Scholar
9.Oberai, K. K., On the Weyl spectrum II, Illinois J. Math. 21 (1977), 8490.CrossRefGoogle Scholar