No CrossRef data available.
Article contents
A note on almost Yamabe solitons
Part of:
Global differential geometry
Published online by Cambridge University Press: 29 November 2023
Abstract
In this paper, we present a sufficient condition for almost Yamabe solitons to have constant scalar curvature. Additionally, under some geometric scenarios, we provide some triviality and rigidity results for these structures.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust
References
Barbosa, E. and Ribeiro, E. Jr, On conformal solutions of the Yamabe flow, Arch. Math. (Basel) 101(1) (2013), 79–89.CrossRefGoogle Scholar
Turki, N. B., Chen, B.-Y. and Deshmukh, S., Conformal vector fields and Yamabe solitons, Int. J. Geom. Methods Mod. Phys. 16(4) (2019), 1950053.CrossRefGoogle Scholar
Brendle, S., Evolution equations in Riemannian geometry, Jpn. J. Math. 6(1) (2011), 45–61.CrossRefGoogle Scholar
Chen, B.-Y., A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativ. Gravit. 46(12) (2014), Art.1833.CrossRefGoogle Scholar
Chow, B., Lu, P. and Ni, L., Hamilton’s Ricci flow, Graduate Studies in Mathematics, vol. 77 (American Mathematical Society, Providence, RI, 2006).Google Scholar
Cunha, A. W., Remarks on scalar curvature of gradient Yamabe solitons with non-positive Ricci curvature, Differ. Geom. Appl. 80 (2022), Paper No.101843.CrossRefGoogle Scholar
Cunha, A. W. and de Lima, E. L., Immersions of
$r$
-almost Yamabe solitons into Riemannian manifolds, Manuscr. Math. 169(1-2) (2022), 313–324.CrossRefGoogle Scholar

Deshmukh, S., Geometry of conformal vector fields, Arab J. Math. Sci. 23(1) (2017), 44–73.Google Scholar
Fernández-López, M. and García-Río, E., Some gap theorems for gradient Ricci solitons, Int. J. Math. 23(7) (2012), 1250072.CrossRefGoogle Scholar
Hsu, S.-Y., A note on compact gradient Yamabe solitons, J. Math. Anal. Appl. 388(2) (2012), 725–726.CrossRefGoogle Scholar
Ma, L. and Miquel, V., Remarks on scalar curvature of Yamabe solitons, Ann. Glob. Anal. Geom. 42(2) (2012), 195–205.CrossRefGoogle Scholar
Maeta, S., Structure of generalized yamabe solitons and its applications, arXiv preprint arXiv:2208.09162 (2023), 1–13.Google Scholar
Mi, R., Remarks on scalar curvature of gradient Ricci-Bourguignon sollitons, Bull. Sci. Math. 171 (2021), Paper No.103034.CrossRefGoogle Scholar
Ros, A. and Urbano, F., Lagrangian submanifolds of
$\textbf{C}^n$
with conformal Maslov form and the Whitney sphere, J. Math. Soc. Jpn. 50(1) (1998), 203–226.CrossRefGoogle Scholar
