No CrossRef data available.
Article contents
Normal curvature of minimal submanifolds in a sphere
Published online by Cambridge University Press: 18 May 2009
Extract
Simons [5] has proved a pinching theorem for compact minimal submanifolds in a unit sphere, which led to an intrinsic rigidity result. Sakaki [4] improved this result of Simons for arbitrary codimension and has proved that if the scalar curvature S of the minimal submanifold Mn of Sn+P satisfies
then either Mn is totally geodesic or S= 2/3 in which case n = 2 and M2 is the Veronese surface in a totally geodesic 4-sphere. This result of Sakaki was further improved by Shen [6] but only for dimension n=3, where it is shown that if S>4, then M3 is totally geodesic (cf. Theorem 3, p. 791).
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1997