Article contents
Non-secular, locally compact TRL groups
Published online by Cambridge University Press: 18 May 2009
Extract
In [12], Loy and Miller proved that a locally compact, eudoxian TR group is algebraically and order-theoretically (and hence, topologically) isomorphic to a finite product of copies of the real numbers. In [18], Wirth used their result to describe the subgroup of a locally compact TR group generated by the compact neighbourhoods of zero. The proof of Loy and Miller relied heavily on a result of Mackey (cf. [10], p. 390) and either the finite-dimensional case of the Choquet-Kendall Theorem (cf. [15], pp. 9–10) or the representation theory of Kakutani (cf. [11], Appendix). Below we use only elementary topological results and order-theoretic arguments and a theorem of Conrad [4] to characterize all non-secular, locally compact TRL groups (Theorem 3). Our proof of Theorem 3 allows us to deduce algebraically the theorems both of Loy and Miller and of Wirth, in both cases without appealing to the theorem of Conrad.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1980
References
REFERENCES
- 1
- Cited by