Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T05:14:14.606Z Has data issue: false hasContentIssue false

Joint spectra and joint numerical ranges for pairwise commuting operators in Banach spaces

Published online by Cambridge University Press:  18 May 2009

Volker Wrobel
Affiliation:
Mathematisches Seminar, der Universität Kiel, Olshausenstrasse 40, D-2300 Kiel 1, FED. REP. GERMANY
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a recent paper M. Cho [5] asked whether Taylor's joint spectrum σ(a1, …, an; X) of a commuting n-tuple (a1,…, an) of continuous linear operators in a Banach space X is contained in the closure V(a1, …, an; X)- of the joint spatial numerical range of (a1, …, an). Among other things we prove that even the convex hull of the classical joint spectrum Sp(a1, …, an; 〈a1, …, an〉), considered in the Banach algebra 〈a1, …, an〉, generated by a1, …, an, is contained in V(a1, …, an; X)-.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1988

References

1.Bonsall, F. F. and Duncan, J., Numerical ranges of operators on normed spaces and of elements of normed algebras I (Cambridge University Press, 1971).CrossRefGoogle Scholar
2.Bonsall, F. F. and Duncan, J., Numerical ranges II (Cambridge University Press, 1973).CrossRefGoogle Scholar
3.Bonsall, F. F. and Duncan, J., Complete normed algebras (Springer Verlag, 1973).CrossRefGoogle Scholar
4.Cho, M. and Takaguchi, M., Some classes of commuting n-tuples of operators, Studia Math. 80 (1984), 245259.CrossRefGoogle Scholar
5.Cho, M., Joint spectra of operators on Banach spaces, Glasgow Math. J. 28 (1986), 6972.CrossRefGoogle Scholar
6.Choi, M. and Davis, C., The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc. 80 (1974), 317321.CrossRefGoogle Scholar
7.Dash, A. T., Joint numerical range, Glasnik Mat. Ser. III (1972), 7581.Google Scholar
8.Harte, R., The spectral mapping theorem in several variables, Bull. Amer. Math. Soc. 78 (1972), 871875.CrossRefGoogle Scholar
9.Lumer, G., Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 2943.CrossRefGoogle Scholar
10.Taylor, J. L., A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172191.CrossRefGoogle Scholar
11.Taylor, J. L., The analytic functional calculs for several commuting operators, Ada Math. 125 (1970), 138.Google Scholar
12.Wermer, J., Banach algebras and several complex variables, (Springer Verlag, 1976).CrossRefGoogle Scholar
13.Wrobel, V., The boundary of Taylor's joint spectrum for two commuting Banach space operators, Studia Math. 84 (1986) 105111.CrossRefGoogle Scholar
14.Wrobel, V., Joint spectra of meromorphic operators, Preprint (Kiel, 1986).Google Scholar
15.Zelasko, W., An axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249261.CrossRefGoogle Scholar
16.Zenger, C., On convexity properties of the Bauer field of values of matrices, Numer. Math. 12 (1968), 96105.CrossRefGoogle Scholar