Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T20:21:15.875Z Has data issue: false hasContentIssue false

Integrals involving E-functions

Published online by Cambridge University Press:  18 May 2009

Fouad M. Ragab
Affiliation:
University of Glasgow
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

§ 1. Introductory. The formula to be proved is

where b>0.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1953

References

REFERENCES

(1)MacRobert, T. M., Phil. Mag. (VII), 31, 256 (1941).Google Scholar
(2)MacRobert, T. M., loc. cit., p. 255.Google Scholar
(3)MacRobert, T. M., Functions of a Complex Variable, (3rd ed., London, 1946), p. 348.Google Scholar
(4)MacRobert, T. M., Quart. Journ. of Maths., Oxford, 13, 68, (1942).Google Scholar
(1)Ragab, F. M., Proc. Glasg. Math. Ass., 1, 133 (1953).Google Scholar
(2)Ragab, F. M., Proc. Glasg. Math. Ass., 1, 129 (1953).CrossRefGoogle Scholar
(1)MacRobert, T. M., Functions of a Complex Variable, (3rd ed., London, 1946), p. 348.Google Scholar
(2)Gray, Matthews and MacRobert, , Bessel Functions, p. 51.Google Scholar
(3)Watson, G. N., Bessel Functions, p. 417.Google Scholar