Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T20:33:07.414Z Has data issue: false hasContentIssue false

IMAGES OF WORD MAPS IN FINITE SIMPLE GROUPS

Published online by Cambridge University Press:  30 August 2013

ALEXANDER LUBOTZKY*
Affiliation:
Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In response to questions by Kassabov, Nikolov and Shalev, we show that a given subset A of a finite simple group G is the image of some word map w : G × GG if and only if (i) A contains the identity and (ii) A is invariant under Aut(G).

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013 

References

REFERENCE

1.Guralnick, R. M. and Kantor, W. M., Probabilistic generation of finite simple groups. Special issue in honor of Helmut Wielandt, J. Algebra 234 (2000), 743792.Google Scholar
2.Hadad, U., On the shortest identity in finite simple groups of Lie type, J. Group Theory 14 (2011), 3747.Google Scholar
3.Jambor, S., Liebeck, M. W. and O'Brien, E. A., Some word maps that are non-surjective on infinitely many finite simple groups, Bull. LMS (2013), doi: 101112/blms/bdt10. (arXiv:1205.1952).Google Scholar
4.Kantor, W. M. and Lubotzky, A., The probability of generating a finite classical group, Geom. Dedicata 36 (1990), 6787.CrossRefGoogle Scholar
5.Kassabov, M. and Nikolov, N., Words with few values in finite simple groups, preprint (arXiv:1112.5484). Q. J. Math. (2012), doi: 10.1093/qmath/has018.Google Scholar
6.Larsen, M., Shalev, A. and Tiep, P. H., The Waring problem for finite simple groups, Ann. Math. 174 (2011), 18851950.Google Scholar
7.Levy, M., Word maps with small image in simple groups, preprint (arXiv:1206.1206).Google Scholar
8.Levy, M., Images of word maps in almost simple groups and quasisimple groups, preprint (arXiv:1301.7188).Google Scholar
9.Liebeck, M. W., O'Brien, E. A., Shalev, A. and Tiep, P. H., The Ore conjecture, J. Eur. Math. Soc. 12 (2010), 9391008.CrossRefGoogle Scholar
10.Segal, D., Words: Notes on verbal width in groups, London Mathematical Society Lecture Note Series, 361 (Cambridge University Press, Cambridge, UK, 2009), xii+121 pp.Google Scholar
11.Spenko, S., On the image of a noncommutative polynomial, J. Algebra 377 (2013), 298311.Google Scholar
12.Wilson, J. S., Finite index subgroups and verbal subgroups in profinite groups, Séminaire Bourbaki, vol. 2009/2010. Exposés 1012–1026. Astérisque No. 339 (2011), Exp. No. 1026, x, 387–408.Google Scholar